Today I have encounter a series:
$$\sum_{n=-\infty}^{+\infty}\frac{1}{(u+n)^2}=\frac{\pi^2}{(\sin \pi u)^2}$$ where $u \not \in \Bbb{Z}$ . I have known a method to compute it (by residue formula): $$\int_{|z|=N+1/2}\frac{\pi \cot \pi z}{(u+z)^2}\text{dz}=-\frac{\pi^2}{\sin^2 \pi u}+\sum_{k=-N}^{N}\frac{1}{(u+k)^2}$$
where $-u$ is a pole of order 2, and $n \in \Bbb{Z}$ and $|n| \leq N$ are poles of order 1. Because $$\left|\int \frac{\pi \cot \pi z}{(u+z)^2}\text{dz}\right|\leq \int_0^{2\pi}\pi\left|1+\frac{2}{e^{i2\pi z}-1}\right|\frac{1}{|((N+1/2)e^{i\varphi}+u)^2|}\text{d}\varphi \rightarrow 0$$ as $N \rightarrow +\infty$.
Does there exist some other ways to compute it?