$$ \sum_{n=1}^\infty \csc^2(\omega\pi n)= \frac{A}{\pi} +B $$ if $\omega =-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ find $\frac{A^2}{B^2}$
My Attempt
$$ \sum_{n=1}^\infty \csc^2(\omega\pi n)= \sum_{n=1}^\infty csch^2(i\omega\pi n)= 4\sum_{n=1}^\infty \big(e^{\pi n \big( \frac{i}{2} + \frac{ \sqrt{3} }{2} \big) }-e^{-\pi n \big( \frac{i}{2} + \frac{ \sqrt{3} }{2} \big)}\big) ^{-2} $$ $$\sum_{n=1}^\infty \big(e^{\pi n \big( \frac{i}{2} + \frac{ \sqrt{3} }{2} \big) }-e^{-\pi n \big( \frac{i}{2} + \frac{ \sqrt{3} }{2} \big)}\big) ^{-2}= \big(ie^{\pi\frac{\sqrt{3}}{2}}+ie^{-\pi\frac{\sqrt{3}}{2}}\big)^{-2}+ \big(-e^{\pi\sqrt{3}}+e^{-\pi\sqrt{3}}\big)^{-2} +\big(-ie^{3\pi\frac{\sqrt{3}}{2}}-ie^{-3\pi\frac{\sqrt{3}}{2}}\big)^{-2}+ \big(e^{2\pi\sqrt{3}}-e^{-2\pi\sqrt{3}}\big)^{-2} +...$$$$= \sum_{n=0}^\infty \big(ie^{(4n+1)\pi\frac{\sqrt{3}}{2}}+ie^{-(4n+1)\pi\frac{\sqrt{3}}{2}}\big)^{-2} +\sum_{n=0}^\infty \big(-e^{(2n+1)π√3}+e^{-(2n+1)π√3}\big)^{-2} +\sum_{n=0}^\infty \big(-ie^{(3+4n)\pi\frac{\sqrt{3}}{2}}+-ie^{-(4n+3)\pi\frac{\sqrt{3}}{2}}\big)^{-2}+ \sum_{n=0}^\infty \big(e^{(2n)π√3}-e^{-(2n)π√3}\big)^{-2} $$ $$\sum_{n=0}^\infty \big(-e^{(4n+1)\pi\sqrt{3}}-2-e^{-(4n+1)\pi\sqrt{3}}\big)^{-1}+ \sum_{n=0}^\infty \big(e^{2(2n+1)\pi\sqrt{3}}-2+e^{-2(2n+1)\pi\sqrt{3}}\big)^{-1} + \sum_{n=0}^\infty \big(e^{(3+4n)\pi\sqrt{3}}-2+e^{-(3+4n)\pi\sqrt{3}}\big)^{-1}+ \sum_{n=1}^\infty \big(e^{4n\pi\sqrt{3}}-2+e^{-4n\pi\sqrt{3}}\big)^{-1} $$ I have found the sums numerically and $\sum_{n=0}^\infty \big(-e^{(4n+1)\pi\sqrt{3}}-2-e^{-(4n+1)\pi\sqrt{3}}\big)^{-1}+ \sum_{n=0}^\infty \big(e^{2(2n+1)\pi\sqrt{3}}-2+e^{-2(2n+1)\pi\sqrt{3}}\big)^{-1} + \sum_{n=0}^\infty \big(e^{(3+4n)\pi\sqrt{3}}-2+e^{-(3+4n)\pi\sqrt{3}}\big)^{-1}+ \sum_{n=1}^\infty \big(e^{4n\pi\sqrt{3}}-2+e^{-4n\pi\sqrt{3}}\big)^{-1} \approx -0.00429$ How can I evaluate this analytically?
Mathematica
solve sum and give answer byQPolyGamma
function's. – Mariusz Iwaniuk Jul 25 '20 at 08:51