The full problem asked: Let $\sigma$ be real, and not an integer. Find the complex form of the Fourier series for the $2\pi$ periodic function $F(x)=e^{-i\sigma x}$ on $[-\pi,\pi]$. Use this and Parseval's theorem to show that $$\csc^2(\pi\sigma)=\frac{1}{\pi^2}\sum_{n=-\infty}^{\infty}\frac{1}{(n+\sigma)^2}.$$
I found the Fourier series for $F$ to be $$\sum_{n=-\infty}^\infty\frac{\sin[\pi(n+\sigma)]}{\pi(n+\sigma)}e^{inx},$$ and using Parseval's theorem, I have that $$\frac{1}{2\pi}\int_{-\pi}^\pi|e^{-i\sigma x}|^2dx= \sum_{n=-\infty}^\infty\bigg|\frac{\sin[\pi(n+\sigma)]}{\pi(n+\sigma)}\bigg|^2,$$ but I don't see how to get from here to $\csc^2(\pi\sigma)\frac{1}{\pi^2}\sum_{n=-\infty}^{\infty}\frac{1}{(n+\sigma)^2}.$