-1

I want to show that $\frac{\pi^2}{\sin^2(a\pi)}=\sum_{n=-\infty}^{\infty}\frac{1}{(a+n)^2}$.

I found this post Showing $ \sum_{n=0}^{\infty} \frac{1}{(3n+1)(3n+2)}=\frac{\pi}{3\sqrt{3}}$ where the answer of Marko Riedel seems to be very interesting.

In my case it would be necessary to look at $\pi \int_{\gamma} \frac{1}{(z+a)^2} \cot(\pi z) dz=0$ for $\gamma=[n+1/2+ni,-n-1/2+ni] \cup [-n-1/2+ni,-n-1/2-ni] \cup [-n-1/2-ni,n+1/2-ni] \cup [n+1/2-ni,n+1/2+ni]$.

But I don't know how to show that this integral goes to $0$ for $n \rightarrow \infty$

Philip
  • 393

1 Answers1

1

Well, this is a question from Conway's book. Anyway:

We assert that $$ \lim _{n \rightarrow \infty} \int_{\gamma} \frac{\pi \cot \pi z}{(z+a)^{2}} d z=0 $$ In effect, let $z=x+y i$, then $$ |\cot \pi z|^{2}=\frac{\cos ^{2} \pi x+\sinh ^{2} \pi y}{\sin ^{2} \pi x+\sinh ^{2} \pi y} $$ Let $L_{n}=\left[n+\frac{1}{2}-n i, n+\frac{1}{2}+n i\right]$ be the right side of $\gamma$. So if $ z \in\left\{L_{n}\right\}$, $\cos \pi x=0$ and $\sin \pi x= \pm 1$ then $$ z \in\left\{L_{n}\right\} \Longrightarrow|\cot \pi z|^{2}=\frac{\sinh ^{2} \pi y}{1+\sinh ^{2} \pi y} \leq 1 $$ Hence, $$ \begin{aligned} \left|\int_{L_{n}} \frac{\pi \cot \pi z}{(z+a)^{2}} d z\right| & \leq \pi \frac{\max _{z \in\left\{L_{n}\right\}}|\cot \pi z|}{\min _{z \in\left\{L_{n}\right\}}|z+a|^{2}} \ell\left(L_{n}\right) \\ & \leq \pi \frac{1}{\left(n+\frac{1}{2}+\operatorname{Re} a\right)^{2}} 2 n\longrightarrow 0. \end{aligned} $$ when $n \longrightarrow \infty$. Likewise for $L_{n}=\left[-n-\frac{1}{2}+n i,-n-\frac{1}{2}-n i\right]$ the left side of $\gamma$, then $$ \int_{L_{n}} \frac{\pi \cot \pi z}{(z+a)^{2}} d z \longrightarrow 0 \text { quando } n \longrightarrow \infty. $$ Now, consider $L_{n}=\left[n+\frac{1}{2}+n i,-n-\frac{1}{2}+n i\right]$, top side of $\gamma$ . If $z \in\left\{L_{n}\right\}$, we have $$ |\cot \pi z|^{2}=\frac{\cos ^{2} \pi x+\sinh ^{2} n \pi}{\sin ^{2} \pi x+\sinh ^{2} n \pi} \leq \frac{1+\sinh ^{2} n \pi}{0+\sinh ^{2} n \pi}=1+(\sinh n \pi)^{-2} $$ Then, $$ \begin{aligned} \left|\int_{L_{n}} \frac{\pi \cot \pi z}{(z+a)^{2}} d z\right| & \leq \pi \frac{\max _{z \in\left\{L_{n}\right\}}|\cot \pi z|}{\min _{z \in\left\{L_{n}\right\}}|z+a|^{2}} \ell\left(L_{n}\right)\leq \pi \frac{1+(\sinh n \pi)^{-2}}{(n+\operatorname{Im} a)^{2}}(2 n+1)\longrightarrow0 \end{aligned} $$ when $n\longrightarrow\infty$.

On the other hand, see that there are poles within $\gamma$ located in the integers $k=-n, \ldots, n$ and when $n$ is large enough, an additional pole located in $-a$. If $-n \leq k \leq n$, then $$ \lim _{z \rightarrow k} \frac{\sin \pi z}{z-k}=\lim _{z \rightarrow k} \frac{\sin \pi z-\sin \pi k}{z-k}=\left.\frac{d}{d z} \sin \pi z\right|_{z=k}=\pi \cos \pi k. $$ Hence, $$ \operatorname{Res}\left(\frac{\pi \cot \pi z}{(z+a)^{2}}, k\right) =\lim _{z \rightarrow k}(z-k) \frac{\pi \cot \pi z}{(z+a)^{2}} =\lim _{z \rightarrow k} \frac{\pi \cos \pi z}{(z+a)^{2}} \frac{1}{\frac{\sin \pi z}{z-k}} =\frac{1}{(k+a)^{2}}, $$ and \begin{align*} \operatorname{Res}\left(\frac{\pi \cot \pi z}{(z+a)^{2}}, -a\right) =\left((z+a)^2\frac{\pi\cot \pi z}{(z+a)^2}\right)'(-a) &=\left(\pi\cot \pi z\right)'(-a)\\ &=\pi^2\sin^{-2}(-a\pi)\\ &=-\pi^2\sin^{-2}(a\pi). \end{align*} Follows, by the Residue Theorem, that \begin{align*} 0=\lim_{n\to\infty}\int_\gamma\pi\frac{\cot(\pi z)}{(z+a)^2} &=\lim_{n\to\infty}\left[\sum_{k=-n}^n\frac{1}{(k+a)^{2}}-\pi^2\sin^{-2}(a\pi)\right]\\ &=\sum_{n=-\infty}^\infty\frac{1}{(n+a)^{2}}-\pi^2\sin^{-2}(a\pi). %&=\pi^2\sin^{-2}(a\pi)+\sum_{n=-\infty}^\infty\frac{1}{(-n+a)^{2}}\\ %&=\pi^2\sin^{-2}(a\pi)+\sum_{n=-\infty}^\infty\frac{1}{(n+a)^{2}} \end{align*}

Kempa
  • 648
  • 3
  • 8