If we proceed using the limiting procedure discussed at the end of the question, we find that for $\omega\ne0$
$$\begin{align}
\lim_{\epsilon\to0^+}\int_{-\infty}^\infty xH(x)e^{-\epsilon x}e^{-i\omega x}\,dx&=\lim_{\epsilon\to0^+}\int_{0}^\infty xe^{-(\epsilon+i\omega) x}\,dx \\\\
&=\lim_{\epsilon\to 0^+}\frac1{(\epsilon+i\omega)^2}\\\\
&=-\frac1{\omega^2}
\end{align}$$
But this is not the Fourier Transform of $tH(t)$.
We now proceed to evaluate the distributional limit $\displaystyle \lim_{\epsilon\to 0^+}\frac1{(\epsilon+i\omega)^2}$ by applying it to a suitable test function.
Let $f$ be a smooth function of compact support. We can write for any $\delta>0$
$$\begin{align}
\lim_{\epsilon\to 0^+}\int_{-\infty}^\infty \frac{f(\omega)}{(\epsilon+i\omega)^2}\,d\omega&=\lim_{\epsilon\to 0^+}\int_{|\omega|\ge \delta}\frac{f(\omega)}{(\epsilon+i\omega)^2}\,d\omega+\lim_{\epsilon\to 0^+}\int_{|\omega|\le \delta}\frac{f(\omega)}{(\epsilon+i\omega)^2}\,d\omega\\\\
&=-\int_{|\omega|\ge \delta}\frac{f(\omega)}{\omega^2}\,d\omega-\lim_{\epsilon\to 0^+}\int_{|\omega|\le \delta}\frac{f(\omega)}{(\omega -i\epsilon)^2}\,d\omega\\\\
&=-\int_{|\omega|\ge \delta}\frac{f(\omega)}{\omega^2}\,d\omega-\lim_{\epsilon\to 0^+}\int_{|\omega|\le \delta}\frac{f(0)+f'(0)\omega}{(\omega -i\epsilon)^2}\,d\omega+O(\delta)\\\\
&=-\int_{|\omega|\ge \delta}\frac{f(\omega)}{\omega^2}\,d\omega+2\frac{f(0)}{\delta}-i\pi f'(0)+O(\delta)\\\\
&=-\int_{|\omega|\ge \delta}\frac{f(\omega)-f(0)}{\omega^2}\,d\omega-i\pi f'(0)+O(\delta)\tag1
\end{align}$$
Letting $\delta\to0$ in $(1)$ reveals
$$\begin{align}\lim_{\epsilon\to 0^+}\int_{-\infty}^\infty \frac{f(\omega)}{(\epsilon+i\omega)^2}\,d\omega&=-\text{PV}\int_{-\infty}^\infty\frac{f(\omega)-f(0)}{\omega^2}\,d\omega-i\pi f'(0)\\\\
&=\text{PV}\int_{-\infty}^\infty\left(- \frac{1}{\omega^2}\right)\left( f(\omega) - f(0) \right)\,d\omega+i\pi\int_{-\infty}^\infty \delta'(\omega)f(\omega)\,d\omega\tag2
\end{align}$$
We deduce from $(2)$ that in distribution
$$\lim_{\epsilon\to 0^+}\frac1{(\epsilon+i\omega)^2}=\left(-\frac1{\omega^2}\right)+i\pi \delta'(\omega)$$
where the distribution $\displaystyle \left(-\frac1{\omega^2}\right)$ is interpreted in the sense of $(2)$.