5

Suppose we have a Fourier pair of $f(t)={1\over 2\pi}\int_{-\infty}^{\infty}F(w)e^{-iwt}dw$ and $F(w)=\int_{-\infty}^{\infty}f(t)e^{iwt}dt.$

How can we prove the following pair? $f(t)=\int_{-\infty}^t g(\tau) d\tau $ and $F(w)=G(w)/iw+\pi G(0)\delta(w),$ where $\delta$ is a delta function.

msm
  • 7,147
Ray
  • 321
  • Do you know the Fourier transform of the step function? – msm Dec 28 '16 at 13:18
  • I am afraid I don't – Ray Dec 28 '16 at 13:23
  • @Ray In general, we cannot assign meaning to $\mathscr{F}{u*g}$.

    For example, if $g(t)=u(t)$, then $u*u=tu(t)$. I showed in THIS ANSWER that in distribution

    $$\mathscr{F}{ u*u}=\left(-\frac1{\omega^2}\right)+i\pi \delta'(\omega)\tag1$$

    where $\left(-\frac1{\omega^2}\right)$ is the distributional derivative of $\text{PV}\left(\frac1{\omega}\right)$.

    The right-hand side is obviously *not* equal to $\pi G(\omega)\delta(\omega)+\text{PV}\left(\frac{G(\omega)}{i\omega}\right)$.

    – Mark Viola Jun 15 '21 at 18:03
  • @Ray I'm uncertain whether you had a chance to read the comment I left. Please let me know if you have. – Mark Viola Jun 26 '21 at 03:36

1 Answers1

10

The step function $$u(t)=\begin{cases} 1,& t\ge0\\ 0,& t<0 \end{cases}$$ has the Fourier transform $$U(\omega)=\frac{1}{i\omega}+\pi\delta(\omega)$$ I leave it to you to find out how (it is not difficult!).

Now considering the definition of convolution, we can write the given integral as follows:

$$f(t)=\int_{-\infty}^t g(\tau) \mathrm d\tau = \int_{-\infty}^{+\infty} g(\tau)u(t-\tau) \mathrm d\tau=g(t)*u(t)$$

Using the convolution theorem, we have $F(\omega)=G(\omega)U(\omega)$. That is

$$F(\omega)=\frac{G(\omega)}{i\omega}+\pi G(\omega)\delta(\omega)$$ and since $\delta(\omega)$ is only nonzero at $\omega=0$, it simplifies to

$$F(\omega)=\frac{G(\omega)}{i\omega}+\pi G(0)\delta(\omega)$$

msm
  • 7,147
  • What about if $f(t)=\int_{t}^{\infty}g(\tau) d\tau$ ? – Ray Dec 28 '16 at 14:23
  • In such case $$f(t)=\int_t^{\infty} g(\tau) \mathrm d\tau = \int_{-\infty}^{+\infty} g(\tau)u(\tau-t) \mathrm d\tau=g(t)*u(-t)$$ and $F(\omega)=G(\omega)U(-\omega)=\frac{G(\omega)}{-i\omega}+\pi G(0)\delta(\omega)$ – msm Dec 28 '16 at 21:03
  • @msm In general, we cannot assign meaning to $\mathscr{F}{u*g}$.

    For example, if $g(t)=u(t)$, then $u*u=tu(t)$. I showed in THIS ANSWER that in distribution

    $$\mathscr{F}{ u*u}=\left(-\frac1{\omega^2}\right)+i\pi \delta'(\omega)\tag1$$

    where $\left(-\frac1{\omega^2}\right)$ is the distributional derivative of $\text{PV}\left(\frac1{\omega}\right)$.

    The right-hand side is obviously *not* equal to $\pi G(\omega)\delta(\omega)+\text{PV}\left(\frac{G(\omega)}{i\omega}\right)$.

    – Mark Viola Jun 15 '21 at 18:03
  • @msm I'm uncertain whether you had a chance to read the comment I left. Please let me know if you have. – Mark Viola Jun 26 '21 at 03:36