Let $\phi(x)$ be a Schwartz function and $\displaystyle \psi(x)=\text{PV}\left(\frac1{ix}\right)$.
Using the distributional relationships $\langle d',\phi\rangle =-\langle d,\phi'\rangle $ for any tempered distribution $d$ and $\text{sgn}'(x)=2\delta(x)$, we have
$$\begin{align}
\langle \mathscr{F}\{\text{sgn}\},\phi \rangle &=\langle \text{sgn},\mathscr{F}\{\phi\}\rangle\\\\
&=\langle \text{sgn},\left(\mathscr{F}\{\phi \psi\}\right)'\rangle\\\\
& =-\langle(\text{sgn})', \mathscr{F}\{\phi \psi\}\rangle\\\\
& =-2\langle \delta, \mathscr{F}\{\phi\psi\}\rangle\\\\
&=2i\text{PV}\left(\int_{-\infty}^\infty \frac{\phi(x)}{x}\,dx\right)
\end{align}$$
Hence, we can write the distributional relationship
$$\bbox[5px,border:2px solid #C0A000]{\mathscr{F}\{\text{sgn}\}(x)=\text{PV}\left(\frac{2i}{x}\right)}$$
ADDENDUM TO ORIGNAL POST:
Here we present an approach very similar to that of @JoeMack.
For any $\delta>0$ we have
$$\begin{align}
\langle \mathscr{F}\{\text{sgn}\},\phi\rangle &=\langle \text{sgn}, \mathscr{F}\{\phi\}\rangle\\\\
&=\int_0^\infty \int_{-\infty}^\infty \phi(k)e^{ikx}\,dk\,dx-\int_{-\infty}^0 \int_{-\infty}^\infty \phi(k)e^{ikx}\,dk\,dx\\\\
&=2i\int_0^\infty \int_{-\infty}^\infty \phi(k)\sin(kx)\,dk\,dx\\\\
&=\lim_{L\to \infty}\int_{-\infty}^\infty \phi(k)\frac{1-\cos(kL)}{k}\,dk\\\\
&=\lim_{L\to \infty}2i\left(\int_{|k|\ge \delta}\phi(k)\frac{1-\cos(kL)}{k}\,dk+\int_{|k|\le \delta}\phi(k)\frac{1-\cos(kL)}{k}\,dk\right)\\\\
&=2i\int_{|k|\ge \delta}\frac{\phi(k)}{k}\,dk+O(\delta)\tag1
\end{align}$$
Letting $\delta\to 0$ on the right-hand side of $(1)$, we find that
$$\langle \mathscr{F}\{\text{sgn}\},\phi\rangle=\lim_{\delta\to 0}\int_{|k|\ge \delta}\frac{2i\phi(k)}{k}\,dk\tag2$$
The right-hand side of $(2)$ is the Cauchy Principal Value of $\int_{-\infty}^\infty \frac{2i\phi(k)}{k}\,dk$. Therefore, we find that in distribution
$$\mathscr{F}\{\text{sgn}\}(x)=\text{PV}\left(\frac{2i}x\right)$$