How to prove that
$$\mathcal{F}\left\{\int_{-\infty}^{t}f(\tau)\, d\tau\right\}=\frac{1}{i\omega}F(\omega)+\pi F(0)\delta(\omega),$$
where $F(\omega)$ is Fourier transform of $f(t)$. Could anyone explain to me how to prove this?
thanks.
How to prove that
$$\mathcal{F}\left\{\int_{-\infty}^{t}f(\tau)\, d\tau\right\}=\frac{1}{i\omega}F(\omega)+\pi F(0)\delta(\omega),$$
where $F(\omega)$ is Fourier transform of $f(t)$. Could anyone explain to me how to prove this?
thanks.
One way to look at it is to note that
$$\int_{-\infty}^tf(\tau)d\tau=(f\star u)(t)\tag{1}$$
where $\star$ denotes convolution, and $u(t)$ is the unit step function. Consequently, the Fourier transform of $(1)$ is
$$\mathcal{F}\left\{\int_{-\infty}^{t}f(\tau)\, d\tau\right\}=F(\omega)U(\omega)\tag{2}$$
where $F(\omega)$ and $U(\omega)$ are the Fourier transforms of $f(t)$ and $u(t)$, respectively. The Fourier transform of $u(t)$ is
$$U(\omega)=\pi\delta(\omega)+\frac{1}{i\omega}\tag{3}$$
A discussion of $(3)$ can be found here and here. With $(3)$, $(2)$ can be written as
$$\mathcal{F}\left\{\int_{-\infty}^{t}f(\tau)\, d\tau\right\}=\pi F(\omega)\delta(\omega)+\frac{F(\omega)}{i\omega}=\pi F(0)\delta(\omega)+\frac{F(\omega)}{i\omega}\tag{4}$$
For example, if $f(t)=u(t)$, then $u*u=tu(t)$. I showed in THIS ANSWER that in distribution
$$\mathscr{F}{ u*u}=\left(-\frac1{\omega^2}\right)+i\pi \delta'(\omega)\tag1$$
where $\left(-\frac1{\omega^2}\right)$ is the distributional derivative of $\text{PV}\left(\frac1{\omega}\right)$.
The right-hand side is *not* equal to $\pi F(\omega)\delta(\omega)+\text{PV}\left(\frac{F(\omega)}{i\omega}\right)$.
– Mark Viola Jun 15 '21 at 17:59
For example, if $f(t)=u(t)$, then $u*u=tu(t)$. I showed in THIS ANSWER that in distribution
$$\mathscr{F}{ u*u}=\left(-\frac1{\omega^2}\right)+i\pi \delta'(\omega)\tag1$$
where $\left(-\frac1{\omega^2}\right)$ is the distributional derivative of $\text{PV}\left(\frac1{\omega}\right)$.
The right-hand side is *not* equal to $\pi F(\omega)\delta(\omega)+\text{PV}\left(\frac{F(\omega)}{i\omega}\right)$.
– Mark Viola Jun 15 '21 at 18:00