Solve the initial value problem $$u_t+3uu_x=0 ,\quad u(0,x)=\left\{\begin{matrix} 2 & x<1\\ 0& x>1 \end{matrix}\right.$$
My Idea:
given that $u_t+3uu_x=0$
Now $\frac{dt}{1}=\frac{dx}{3u}=\frac{du}{0}$
$\frac{dt}{1}=\frac{du}{0} \rightarrow u=c_1$
$\frac{dt}{1}=\frac{dx}{u} \Rightarrow \frac{dt}{1}=\frac{dx}{3c_1} \Rightarrow 3c_1t-x=c_2$
any one can help me from here