FUNCTIONS
At first, let us consider some functions of the non-negative argument.
The continuous function
$$f(t)=\dfrac{t}{t^{11} + 1}\tag{1a}$$
has the next properties:
$$f(0) = f(\infty) = 0,\quad f(x) > 0 \quad \text{if}\quad t\in(0, \infty).\tag{1b}$$
The derivative
$$\dfrac{df}{dt} = \dfrac{1 - 10 t^{11}}{(t^{11} + 1)^2}\tag{1c}$$
has the single root
$$t_m = \dfrac1{\sqrt[11]{10}} \approx 0.81113,\quad f'(t_m)= 0,\quad
f(t_m) = f_m = \dfrac1{11}10^{10/11}\approx 0.73739.\tag{1d}$$
These mean that the function $f(t)$ is positive for all positive $t,$ with the maximum $f_m$ in the point $t_m$ and the values range $f(x) \in [0, f_m].$
Besides, the function $f(t)$ increases monotonically in $[0, t_m)$ and decreases monotonically in $(t_m, \infty).$
The continuous function
$$g(u) = 2f\left(u^{-1/11}\right) + f(u^{2/11})\tag{2a},$$
or
$$g(u) = \dfrac{2u^{10/11}}{u+1}+\dfrac{u^{2/11}}{u^2+1},\tag{2b}$$
is the positive in the interval $u\in\left[\dfrac1{10}, 10\right].$
The derivative
$$g'(u) = \dfrac2{11}\dfrac{10-u}{(u+1)^2}u^{-1/11}-\dfrac2{11}\dfrac{1-10u^2}{u(u^2 + 1)^2}u^{2/11}\tag{2c}.$$
has the roots
$$u_0 = 1,\quad u_1 \approx 2.4,\quad u_2\approx 6.933583,$$
wherein
$$g(1) = \dfrac32,\quad g(u_1)\approx 1.477,\quad g(u_2) \approx1.49475 < \dfrac32. $$
Therefore,
$$g(u) \le \dfrac32\quad \text{ if } u\in\left[\dfrac1{10}, 10\right].\tag{2d}$$
The continuous function
$$h(t) = tf'(t) = t\dfrac{1-10t^{11}}{(t^{11}+1)^2}\tag{3a}$$
has the next properties:
$$\begin{cases}
h(0) = h(t_m) = 0\\
h(t) < 0 \text{ if } t\in(0,t_m)\\
h(t) > 0 \text{ if } t\in(t_m, \infty).
\end{cases}\tag{3b}$$
The derivative
$$h'(t) = \dfrac{100t^{22} - 141t^{11}+ 1}{(t^{11} + 1)^3}\tag{3c}$$
has the roots
$$t_1 = \sqrt[11]{\frac{141-11\sqrt{161}}{200}} = \left(\dfrac{\sqrt{161} - 11}{20}\right)^{2/11} \approx 0.63799 \in (0, t_m),\tag{3d}$$
$$t_2 = \sqrt[11]{\frac{141+11\sqrt{161}}{200}} = \left(\dfrac{\sqrt{161} + 11}{20}\right)^{2/11}\approx 1.0313 \in (t_m, \infty)\tag{3e}.$$
These mean that the function $h(t)$ is positive in $(0, t_m)$ and negative in $(t_m, \infty).$
Besides, it increases monotonically in $(0, t_1)$ and $(t_2, \infty)$ and decreases monotonically in $(t_1, t_2).$
THE TASK ANALYSIS
The issue inequality can be written in the form of
$$\Phi(x, y, z) \le \dfrac32,\tag{4a}$$
where
$$\Phi(x, y, z) = f(x) + f(y) + f(z)\tag{4b}.$$
The issue conditions are
$$xyz = 1,\quad (x, y, z)\in (0,\infty)^3.\tag{4c}$$
Note that
$$f(1) = \dfrac12, \quad f(t) < \dfrac12 \text{ if } t\in(1,\infty).$$
This means that the inequality $(4a)$ becomes exact equality when $x = y = z = 1.$
Also that means that at least one of the values $x,\ y,\ z$ belongs to the interval $(0, 1].$
On the other hand, the conditions $(4c)$ provide at least one of the values $x,\ y,\ z$ belongs to the interval $[1, \infty).$
Let WLOG $0 < x \le y \le z,$ then it suffices to consider cases $y\le 1$ and $y > 1.$
CASE $\mathbf{0 < x \le y \le 1 \le z.}$
Let us find the maximum of
$$F(x, y) = f(x) + f(y) + f\left(\dfrac1{xy}\right),\quad (x, y) \in (0,1]^2.\tag{5a}$$
The nesessary extremum conditions of $F(x, y)$ are $F'_x = F'_y = 0,$ or
\begin{cases}
f'(x) - \dfrac1{x^2y} f\left(\dfrac1{xy}\right) = 0\\
f'(y) - \dfrac1{xy^2} f\left(\dfrac1{xy}\right) = 0.
\end{cases}
Taking in account $(3a),$ this system can be presented in the form of
$$h(x) = h(y) = h\left(\dfrac1{xy}\right).\tag{5b}$$
In the same time, $\dfrac1{xy} > 1,\ h\left(\dfrac1{xy}\right) < 0,$ so the system $(5b)$ contents the negative values.
Thus,
$$t_m < x \le y \le 1 \le z,\quad h(x) = h(y) = h\left(\dfrac1{xy}\right) < 0.\tag{5c}$$
In accordance with $(3d),$ the function $h(x)$ is monotonic in the $[t_m, 1].$
Therefore, the system $(5c)$ leads to
$$x = y,\quad z = \dfrac1{x^2},\tag{5d}$$
$$F(x, y) = 2f(x) + f\left(\dfrac1{x^2}\right),$$
and, taking in account $(2a)$,
$$F(x,y) = g(x^{-11}),\quad x^{-11}\in[1, 10).$$
In accordance with $(2d),\quad F(x, y,z)\le\dfrac32.$
Thus, the issue inequality is proved in the case $\mathbf{y \le 1.}$
THE CASE $\mathbf{0 < x \le 1 < y \le z.}$
Let us find the maximum of
$$G(y, z) = f\left(\dfrac1{yz}\right) + f(y) + f(z)\quad (y, z) \in (1,\infty)^2.\tag{6b}$$
The nesessary extremum conditions of $G(y, z)$ are $G'_y = F'_z = 0,$ or
\begin{cases}
- \dfrac1{y^2z} f'\left(\dfrac1{yz}\right) + f'(y) = 0\\
- \dfrac1{yz^2} f'\left(\dfrac1{yz}\right) + f'(z)= 0.
\end{cases}
Taking in account $(3a)$, this system can be presented in the form of
$$h\left(\dfrac1{yz}\right) = h(y) = h(z).\tag{6b}$$
In the same time,
$$1 < y \le z\quad\Rightarrow\quad h(y) = h(z) < 0.$$
Thus,
$$t_m < \dfrac1{yz} < 1 < y \le z,\quad h\left(\dfrac1{yz}\right) = h(y) = h(z) < 0.\tag{6c}$$
The function $h(t)$ monotonically decreases in $(t_m, t_2)$ and monotonically increases in $(t_2, \infty).$
If $y\le t_2,$ then, taking in account $(4c),$ the values $h(1/yz)$ and $h(y)$ belongs to the decreasing branch of h(t). That leads to contradiction $\dfrac1{yz} = y$ with $1 < y < z,$ and then the system $(6b)$ has not solutions.
Therefore
$$t_m < \dfrac1{yz} \le 1 \le r_2 \le y \le z,\quad h\left(\dfrac1{yz}\right) = h(y) = h(z) < 0,$$
These mean that both of the values $h(y) = h(z)$ belongs to the same increasing branch, so
$$y = z,\quad x = \dfrac1{z^2},\tag{6d}$$
$$F(x, y, z) = 2f(z) + f\left(\dfrac1{z^2}\right),$$
and, taking in account $(2)$,
$$F(x,y,z) = g(z^{-11}),\quad z^{-11}\in\left[\dfrac1{10}, 1\right).$$
In accordance with $(2d),\quad F(x, y,z)\le\dfrac32.$
The issue inequality is proved in the case $\mathbf{y > 1.}$
Thus,
if $xyz =1,\ (x,y,z) \in(0,\infty)^3,$
then
$$\boxed{\dfrac x{x^{11}+1} + \dfrac y{y^{11}+1} + \dfrac z{z^{11}+1} \le \dfrac32.}$$