FINAL EDITION $08.03.18$
FUNCTIONS
At first, let us consider the function
$$f(t)=\dfrac{t}{t^{11} + 1},\quad t\in[0, \infty).$$
Easy to see that
$$f(0) = f(\infty) = 0$$
and
$$\dfrac{df}{dt} = \dfrac{1 - 10 t^{11}}{(t^{11} + 1)^2}.$$
So $f(t)$ is unimodal in the interval $[0, \infty),$ with the maximum
$$f'(t_m) = 0,\quad t_m = \dfrac1{\sqrt[11]{10}} \approx 0.81113,\quad f_m = f(t_m) = \dfrac1{11}10^{10/11}\approx 0.73739.\tag1$$
This means that the actual range of values of the gamma function is $(0,f_m),$
where the terms increases monotonically and
$$g_m = \dfrac{\sqrt\pi}{\Gamma(f_m)} \approx 1.4264505975\dots\tag2$$
Also note that
$$f(1) = \dfrac 12,\quad \Gamma\left(\dfrac12\right) = \sqrt\pi.$$
This means that the issue inequality becomes exact equality when
$$x = y = z = 1,\quad f(x)= \dfrac12.$$
In the same time, if $t>1,$ then $f(t) < \dfrac12.$
Thus, at least one of values $x,\ y,\ z$ belongs to the interval $(0, 1].$
These are the reasons to consider the function
$$v(t) = \dfrac {\sqrt\pi}{\Gamma\left(t+\dfrac12\right)}\tag3$$
for the values $t+\dfrac12 \in [0,\ f_m],$ where it increases monotonically.
Then, one can obtain the Taylor series in the form of
$$v(t) = 1 + v_1t + v_2t^2 + v_3t^3 + v_4t^2 +\dots,\tag4$$
where
\begin{aligned}
&v_1 = -\psi^{(0)}\left(\dfrac12\right) = \gamma + \log 4 \approx1.9635100260\dots,\\
&v_2 = -\dfrac14(\pi^2 - 2v_1^2) = -\dfrac14(p - 2\pi^2) \approx 0.53971 52891\dots,\\
&v_3 = -\dfrac1{12}(3\pi^2v_1 - 2v_1^3 - 28\zeta(3)) = -\dfrac1{12}(pv_1-28\zeta(3))\approx -0.7782905521\dots,\\[4pt]
&v_4 = \dfrac1{96}(4v_1^4 - 12\pi^2v_1^2 + 224\zeta(3)v_1)\\[4pt]
&\quad = \dfrac1{96}(p^2 - 10\pi^2 - 8\cdot28\zeta(3)v_1)\approx 0.3555284642\dots,\\
&\gamma \approx 0.5772156649\dots \text{(Euler gamma constant)},\\[4pt]
&p = 3\pi^2 - 2v_1^2 \approx 21.8980699586\dots,\\[4pt]
&28\zeta(3) = 33.6575932884\dots.
\end{aligned}
Easy to see that
$$v(t) \le 1 + v_1\left(t-\dfrac12\right)\tag5$$
Taking in account the proof of Michael Rozenberg inequality
$$f(x) + f(y) + f(z) \le \dfrac32\quad \text{ if } (x,y,z)\in(0,\infty)^3 \wedge xyz = 1,$$
one can write:
$$v(f(x)) + v(f(y)) + v(f(z)) - 3 \le v_1\left(f(x) -\dfrac12 + f(y) -\dfrac12 + f(z) -\dfrac12\right) \le 0,$$
$$\boxed{v(f(x)) + v(f(y)) + v(f(z)) \le 3.} $$