I'm interested by the following problem :
Let $a,b,c$ be real positive numbers such that $abc=1$ with and $\beta>1$ and $0<\alpha<1$ then : $$\Big(\frac{\alpha a}{a^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha b}{b^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha c}{c^{11}+1}\Big)^\frac{1}{\beta}\leq 3\Big(\frac{\alpha}{2}\Big)^\frac{1}{\beta}$$
I claim that the maximum is reached for the triplet $(1;1;1)$ But I can't prove it ..
Any helps or hints would be appreciated .
Edit :
We start with the case $a\leq 1$ , $b\leq 1$ , $c\geq 1$ so we have : $$\Big(\frac{\alpha a}{a^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha b}{b^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha c}{c^{11}+1}\Big)^\frac{1}{\beta}$$ Or with $a\geq 1$, $b\geq 1$ , $c\leq 1$ : $$\Big(\frac{\alpha a^{10}}{a^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha b^{10}}{b^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha c^{10}}{c^{11}+1}\Big)^\frac{1}{\beta}$$ We have the following lemma :
Let $a,b$ be real positive numbers with $a\geq 1$, $b\geq 1$ then we have : $$\Big(\frac{\alpha a^{10}}{a^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha b^{10}}{b^{11}+1}\Big)^\frac{1}{\beta}\leq2\Big(\frac{\frac{\alpha a^{10}}{a^{11}+1}+\frac{\alpha b^{10}}{b^{11}+1}}{2}\Big)^\frac{1}{\beta}\leq 2\Big(\frac{a+b}{2ab}\frac{\alpha(\frac{2ab}{a+b})^{11}}{(\frac{2ab}{a+b})^{11}+1}\Big)^\frac{1}{\beta}$$
Proof :
It's just the inequality of Jensen apply to $f(x)$ wich is concave for $x\geq 1$ :
$f(x)=\Big(\frac{\alpha x^{11}}{x^{11}+1}\Big)$
The variable are :
$x_1=a$ and $x_2=b$
With coefficient :
$\alpha_1=\frac{1}{a}\frac{ab}{a+b}$
And
$\alpha_2=\frac{1}{b}\frac{ab}{a+b}$
We have this other lemma :
$$\Big(\frac{\alpha c^{10}}{c^{11}+1}\Big)^\frac{1}{\beta}=\Big(\frac{\alpha ab}{(ab)^{11}+1}\Big)^\frac{1}{\beta}\leq \Big(\frac{\alpha (\frac{2ab}{a+b})^{2}}{(\frac{2ab}{a+b})^{22}+1}\Big)^\frac{1}{\beta} $$
Proof :
It's easy to show this because $f(x)=\Big(\frac{\alpha x}{x^{11}+1}\Big)$ is decreasing for $x\geq 1$
It's remains to prove : $$(\frac{2ab}{a+b})^{2}\leq ab $$
Wich is obvious.
So we have :
$$2\Big(\frac{a+b}{2ab}\frac{\alpha( \frac{2ab}{a+b})^{11}}{(\frac{2ab}{a+b})^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha( \frac{2ab}{a+b})^{2}}{(\frac{2ab}{a+b})^{22}+1}\Big)^\frac{1}{\beta}$$
Now we put :
$x=\frac{2ab}{a+b}$
We get for $x\geq 1$:
$$2\Big(\frac{\alpha (x)^{10}}{(x)^{11}+1}\Big)^\frac{1}{\beta}+\Big(\frac{\alpha (x)^{2}}{(x)^{22}+1}\Big)^\frac{1}{\beta}\leq 3\Big(\frac{\alpha}{2}\Big)^\frac{1}{\beta}$$
My questions :
How to get the other cases ?
How to prove this last one variable inequality ?
Have you another way to prove this ?
