Minimize $\sum_{1≤ i≤ n} \tan(A_i)$ where $A_i>0$ and $\sum_{1≤ i≤ n} A_i=C$ where $\frac{\pi}{2}>C>0$ is some constant.
I tried to use $\tan(\sum_{1≤ i≤ n} A_i)=\frac{p_1-p_3+p_5-...}{1-p_2+p_4-...}$ where $p_r=\sum \tan A_1\tan A_2...\tan A_r$ where $r=1,2,...,n$
So, $\frac{p_1-p_3+p_5-...}{1-p_2+p_4-...}=d$ where $d=\tan(\sum_{1≤ r≤ n} A_i)$ some constant as $\sum_{1≤ i≤ n} A_i$ is constant.
$=>d(1-p_2+p_4-...)=p_1-p_3+p_5-...$
I find $\frac{\partial{p_j}}{\partial{A_i}}=p_{j-1}(sec^2A_i)$ taking $p_0=1$ and $j>0$.
Now taking partial derivative w.r.t. $A_i$,
$=>d(0-p_1+p_3-p_5)sec^2A_i=(1-p_2+p_4-...)sec^2A_i$
$=>d(0-p_1+p_3-p_5)=(1-p_2+p_4-...)$ as $sec^2A_i≠0$
$=>\tan(\sum_{1≤ r≤ n, r≠i} A_r)=-\frac{1}{d}$
$=>\tan(C-A_i)=-\frac{1}{d}$ for all $1≤ i≤ n$,
So,$\tan(C- A_i)=\tan(C-A_j)$ where $1≤ j≤ n$ and $i≠j$
One of the solution is $A_i=A_j$
I could not proceed further to show that these equalities($=>A_i=\frac{C}{n}$) lead to the minimum value of $\sum_{1≤ i≤ n} \tan(A_i)$?
Please rectify me if there is any mistake.
Another confusion is
$d>0$ as $\frac{\pi}{2}>C>0$
But $\tan(C-A_i)$ is also $>0$ unless $A_i>C$ which is impossible $=>\tan(C-A_i)=-\frac{1}{d}$ is also untenable.