Problem statement
Start with a matrix $$A\in\mathbb{C}^{m\times n}$$ where $m>n$, and
a valid statement for the pseudoinverse matrix
$$
\mathbf{A}^{+} = \left( \mathbf{A}^{*} \mathbf{A} \right)^{-1} \mathbf{A}^{*}
$$
We know (see links) that this matrix is a left inverse:
$$
\mathbf{A}^{+} \mathbf{A} = \mathbf{I}_{n}
\tag{1}
$$
If we add the constrain that the column vectors of $\mathbf{A}$ are orthonormal, we also have
$$
\mathbf{A}^{*} \mathbf{A} = \mathbf{I}_{n}
\tag{2}
$$
Conclusion
The results $(1)$ and $(2)$ suggest the identity
$$
\mathbf{A}^{+} \mathbf{A} = \mathbf{I}_{n} = \mathbf{A}^{*} \mathbf{A}
$$
from which we conclude that
$$
\mathbf{A}^{+} = \mathbf{A}^{*}
$$
Example
$$
\mathbf{A} =
\frac{1}{\sqrt{2}}
\left[
\begin{array}{cr}
i & -1 \\
i & 1 \\
0 & 0 \\
\end{array}
\right],
\qquad
\mathbf{A}^{*} =
\frac{1}{\sqrt{2}}
\left[
\begin{array}{rrc}
-i & -i & 0 \\
-1 & 1 & 0 \\
\end{array}
\right]
$$
$$
\mathbf{A}^{+} \mathbf{A} =
\left[
\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}
\right] = \mathbf{I}_{2},
\qquad
\mathbf{A} \mathbf{A}^{+} =
\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\right]
\ne \mathbf{I}_{3}
$$
$$
\mathbf{A}^{*} \mathbf{A} =
\left[
\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}
\right] = \mathbf{I}_{2},
\qquad
\mathbf{A} \mathbf{A}^{*} =
\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\right]
\ne \mathbf{I}_{3}
$$
Background reading
Categorize the pseudoinverse matrix in terms of left and right inverses:
generalized inverse of a matrix and convergence for singular matrix, What forms does the Moore-Penrose inverse take under systems with full rank, full column rank, and full row rank?
General properties of the pseudoinverse matrix: Moore–Penrose pseudo-inverse Reference.