Proof: Let $\sum a_n$ and $\sum b_n$ be absolutely convergent with $\sum a_n=:A\in\mathbb{R}$ and $\sum b_n=:B\in\mathbb{R}$. We claim that $\sum c_n=\sum_n (\sum_{m=0}^{n} a_m b_{n-m})$ too is absolutely convergent and it converges to $AB$.
Set $\forall n: A_n:= \sum_{k=0}^{n} a_k, B_n:= \sum_{k=0}^{n} b_k, C_n:= \sum_{k=0}^{n} c_k,$ $\tilde{A}_n:= \sum_{k=0}^{n} |a_k|, \tilde{B}_n:= \sum_{k=0}^{n} |b_k|, \tilde{C}_n:= \sum_{k=0}^{n} |c_k|$, and consider the following $2n\times 2n$ matrix:
\begin{bmatrix}
a_0b_0 & a_1b_0 & \cdots & a_nb_0 & \cdots & \cdots & a_{2n}b_{0}\\
a_0b_1 & a_1b_1 & \cdots & a_nb_1 & \cdots & \cdots & a_{2n}b_{1}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
a_0b_n & a_1b_n & \cdots & a_nb_n & \cdots & \cdots & a_{2n}b_{n}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
a_0b_{2n} & a_1b_{2n} & \cdots & a_nb_{2n} & \cdots & \cdots & a_{2n}b_{2n}\\
\end{bmatrix}
Then the upper left $n\times n$ submatrix consists of all the terms of $A_nB_n$, while "anti-diagonal"s are the terms of $c_n$ (so that $c_0$ is the sum of the terms on the first "anti-diagonal", $c_1$ is the sum of the terms on the second "anti-diagonal" and so on), and consequently $C_n$ is the sum of the first $n$ "anti-diagonal"s.
We have two cases: If $\{a_n\}_n,\{b_n\}_n\subseteq \mathbb{R}_{\geq0}$, then by the above interpretation of the matrix we have $C_n\leq A_nB_n\leq C_{2n}$. If, on the other hand, $\{a_n\}_n,\{b_n\}_n\subseteq \mathbb{R}$ are arbitrary sequences, then considering the matrix $(|a_ib_j|)_{i,j\leq n}$ we have $\tilde{C}_n\leq \tilde{A}_n\tilde{B}_n\leq \tilde{C}_{2n}$.
In the first case, $A_n\uparrow A$ and $B_n\uparrow B$. Then $\forall n: C_n\leq A_nB_n\leq C_{2n} \implies \limsup C_n\leq AB \leq \limsup C_{2n}$. Since $\{C_{2n}\}_n\subseteq \{C_{n}\}_n, \limsup C_{2n}\leq \limsup C_{n}$, and hence $\limsup C_n=AB$. As $\{C_n\}_n\uparrow$ too, it can have at most one (real) subsequential limit, viz. its superior limit. Thus $C_n\uparrow AB (\implies \tilde{C}_n= C_n\uparrow AB)$.
For the general case observe that $|A_nB_n-C_n|\leq \tilde{A}_n\tilde{B}_n-\tilde{C}_n$ (in the above matrix these correspond to the sums of the terms of the $n\times n$ matrix that are below the anti-diagonal). The right-hand side vanishes as $n\to\infty$ by the preceding argument (since we have series with nonnegative terms). Then $\lim |A_nB_n-C_n|=0 \implies \lim C_n =\lim A_nB_n= AB$. Q.E.D.