I am attempting to prove that the function $ f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} $ satisfies the functional equation $f(x+y) = f(x)f(y) $ for all real $ x $ and $y$, without relying on the knowledge that $ f(x) $ is the exponential function or using Taylor series expansions. I have been unable to establish the relationship rigorously.It may not be correct what i tried and i may have an error in all equations, but i have tried using the binomial theorem and limit theorems. We know that $ f(x+y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} $, so by the binomial theorem, it becomes:
$ \sum_{i=0}^{n} \left( \sum_{k=0}^{i} \frac{x^{k-i} y^i}{i!(k-i)!} \right) $
Similarly, I represented $ f(x)f(y) $ as:
$ \sum_{i=0}^{n} \left( \sum_{k=0}^{n} \frac{y^k x^i}{k! i!} \right) $
Then, I considered their difference in module and tried to find ways to show that they can become arbitrarily close.
Another approach I tried was induction. I wanted to prove that
$ \sum_{i=0}^{n} \left( \sum_{k=0}^{n} \frac{y^k x^i}{k! i!} \right) $
can be represented as
$ \sum_{i=0}^{n} \left( \sum_{k=0}^{i} \frac{x^{k-i} y^i}{i!(k-i)!} \right) + S_n $
where $ S_n \rightarrow 0 $ as $ n \rightarrow \infty $, but I couldn't achieve that.
I thought that the proof of inductive step would work for n+1 like this: Suppose we assume $(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!})(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!})$, this can be represented as $1+(y+x)+(\frac{x+y}{2!})^2+...+(\frac{x+y}{n!})^n + S_n$, where I think $S_n$ is a term that may approach 0, which is what I want to show.
For the $n+1$ step we want to show that:
$(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!} + \frac{x^{n+1}}{{n+1}!})(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!} + \frac{y^{n+1}}{{n+1}!}) = 1+(y+x)+(\frac{x+y}{2!})^2+...+(\frac{x+y}{n!})^n +\frac{(x+y)^{n+1}}{(n+1)!} + S_{n+1}$,
we can write as follows:
$((1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!}) + \frac{x^{n+1}}{(n+1)!})((1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!}) + \frac{y^{n+1}}{(n+1)!}) = (1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!})(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!}) + \frac{y^{n+1}}{(n+1)!}(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!})+ \frac{x^{n+1}}{(n+1)!}(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!}) + \frac{x^{n+1}y^{n+1}}{(n+1)!(n+1)!}$
$= 1+(y+x)+(\frac{x+y}{2!})^2+...+(\frac{x+y}{n!})^n + S_n + \frac{y^{n+1}}{(n+1)!}(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!}) + \frac{x^{n+1}}{(n+1)!}(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!}) + \frac{x^{n+1}y^{n+1}}{(n+1)!(n+1)!}$
But I haven't tried how to construct $\frac{(x+y)^{n+1}}{(n+1)!} + S_{n+1}$, $S_{n+1}$ approach to 0, from $S_n + \frac{y^{n+1}}{(n+1)!}(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+ \frac{x^n}{n!}) + \frac{x^{n+1}}{(n+1)!}(1+y+\frac{y^2}{2!} +...+ \frac{y^n}{n!}) + \frac{x^{n+1}y^{n+1}}{(n+1)!(n+1)!}$. what is a good proof? thanks!
\(
,\)
,\[
, or\]
. Use$
and$$
. – Arturo Magidin Mar 22 '24 at 16:27