1

Let $q \ge 1$ and $p \ge 0$ be integers. Consider a following integral: \begin{equation} {\mathcal I}^{(q,p)} := \int\limits_0^1 [\log(1-\eta)]^q [\log(\eta)]^p \frac{1}{\eta} d \eta \end{equation} Clearly that integral is proportional to the Nielsen generalized polylogarithm at unity. Now by using Euler's beta function integral it is easy to see that : \begin{equation} {\mathcal I}^{(q,p)} = \frac{\partial^p}{\partial \theta_1^p} \frac{\partial^q}{\partial \theta_2^q} \left. \left[ \frac{(\theta_1-1)! \theta_2!}{(\theta_1+\theta_2)!} \right] \right|_{\theta_1=\theta_2=0} \end{equation} We have computed the derivative with respect to $\theta_2$ using the Faa di Bruno's formula then we have set $\theta_2=0$ then we differentiated the result $p$ times using Mathematica and finally set $\theta_1=0$. As a result we discovered the following relations: \begin{eqnarray} &&1!\cdot{\mathcal I}^{(q,0)} = - \Psi^{(q)}(1) \\ &&2! \cdot{\mathcal I}^{(q,1)} = - \Psi^{(q+1)}(1) + \sum\limits_{j=1}^{q-1} \binom{q}{j} \Psi^{(j)}(1) \Psi^{(q-j)}(1) \\ &&3! \cdot {\mathcal I}^{(q,2)} = -2 \Psi^{(q+2)}(1) + 3 \cdot 1_{q\ge 2}\cdot\sum\limits_{j=1}^{q-1} \binom{q}{j}\cdot\left[ \Psi^{(j+1)}(1) \Psi^{(q-j)}(1)+\Psi^{(j)}(1) \Psi^{(q+1-j)}(1) \right]+ \\ &&-2 \cdot 1_{q \ge 3}\cdot\sum\limits_{1 \le j < j_1 \le q-1} \binom{q}{j,j_1-j,q-j_1} \Psi^{(j)}(1) \Psi^{(j_1-j)}(1) \Psi^{(q-j_1)}(1)\\ &&4! \cdot {\mathcal I}^{(q,3)} = -6 \Psi^{(q+3)}(1)+\\ &&12 \cdot\sum\limits_{j=1}^{q-1} \binom{q}{j} \left[ \Psi^{(j)}(1) \Psi^{(q-j+2)}(1) + \frac{3}{2} \Psi^{(j+1)}(1) \Psi^{(q-j+1)}(1)+\Psi^{(j+2)}(1) \Psi^{(q-j+0)}(1)\right]+\\ &&-12 \cdot \sum\limits_{1 \le j < j_1 \le q-1} \binom{q}{j,j_1-j,q-j_1} \left[\Psi^{(j)}(1) \Psi^{(j_1-j)}(1) \Psi^{(q-j_1+1)}(1)+\Psi^{(j)}(1) \Psi^{(j_1-j+1)}(1) \Psi^{(q-j_1)}(1)+\Psi^{(j+1)}(1) \Psi^{(j_1-j)}(1) \Psi^{(q-j_1)}(1)\right]+\\ &&6\cdot \sum\limits_{1\le j < j_1 < j_2 \le q-1} \binom{q}{j,j_1-j,j_2-j_1,q-j_2} \Psi^{(j)}(1) \Psi^{(j_1-j)}(1) \Psi^{(j_2-j_1)}(1) \Psi^{(q-j_2)}(1) \end{eqnarray} where $\Psi^{(j)}(1)$ is the polygamma function at unity. Now the question would be how do we find the result for $p \ge 3$? The multitude of terms that appear in the Faa di Bruno formula is difficult to deal with. Is there a more elegant way of arriving at the result?

Przemo
  • 11,331
  • First of all, do we agree that it is $(\log(1-\eta))^q$, or using classical notations $(ln(1-\eta))^q$ ? 2) Besides, you use factorial notation where people usually work with $\Gamma$ notation ($x!=\Gamma(x+1)$)... Don't you think that it is maybe the key to a quicker way to your answer ?
  • – Jean Marie Aug 24 '16 at 13:17
  • Well, I got accustomed to using factorials rather than the Gamma function simply because it looks nicer for me. Besides I do not see how using a different notation might help me to find the answer. Please try to use the chain rule to write out the derivatives and then take the appropriate limits. There is no way to get insight into the huge number of terms that appear and in addition the expression is singular. – Przemo Aug 24 '16 at 13:30
  • @JeanMarie: I see no issue in the logarithms above and I agree with the OP that $n!$ is more efficient, as a notation, than $\Gamma(n+1)$. It is Legendre's fault that $n!=\Gamma(n+1)$ instead of $n!=\Gamma(n)$, but we do not have to carry this burden at all costs. – Jack D'Aurizio Aug 25 '16 at 01:54