We consider a following class of Euler sums: \begin{equation} {\bf H}^{(1)}_p(\frac{1}{2}) := \sum\limits_{m=1}^\infty \frac{H_m}{m^p} \cdot \frac{1}{2^m} \end{equation} Now by using the following integral representation: \begin{equation} {\bf H}^{(1)}_p(\frac{1}{2}) = \int\limits_0^{1/2} \frac{[\log(\frac{1/2}{x})]^{p-1}}{(p-1)!} \cdot \frac{Li_1(x)}{x(1-x)} dx \end{equation} and then by integration by parts we computed those sums for $p\le 5$. We have: \begin{eqnarray} {\bf H}^{(1)}_1(1/2) &=& \frac{\pi ^2}{12}\\ {\bf H}^{(1)}_2(1/2) &=& \zeta (3)-\frac{1}{12} \pi ^2 \log (2)\\ {\bf H}^{(1)}_3(1/2) &=& \text{Li}_4\left(\frac{1}{2}\right)-\frac{1}{8} \zeta (3) \log (2)+\frac{\pi ^4}{720}+\frac{\log ^4(2)}{24}\\ {\bf H}^{(1)}_4(1/2) &=& 2 \text{Li}_5\left(\frac{1}{2}\right)+\text{Li}_4\left(\frac{1}{2}\right) \log (2)-\frac{\pi ^2 \zeta (3)}{12}+\frac{\zeta (5)}{32}+\frac{1}{2} \zeta (3) \log ^2(2)+\frac{\log ^5(2)}{40}-\frac{1}{36} \pi ^2 \log ^3(2)-\frac{1}{720} \pi ^4 \log (2)\\ {\bf H}^{(1)}_5(1/2) &=& 3 \text{Li}_6\left(\frac{1}{2}\right)+\text{Li}_5\left(\frac{1}{2}\right) \log (2)-\frac{\zeta (3)^2}{4}-\frac{1}{6} \zeta (3) \log ^3(2)+\frac{1}{12} \pi ^2 \zeta (3) \log (2)-\frac{1}{32} \zeta (5) \log (2)-\frac{19 \pi ^6}{8640}-\frac{\log ^6(2)}{240}+\frac{1}{144} \pi ^2 \log ^4(2)+\frac{\pi ^4 \log ^2(2)}{1440}-\frac{1}{2} {\bf H}^{(1)}_5(-1) \end{eqnarray} Note that the last case above involves a new quantity ${\bf H}^{(1)}_5(-1) = \zeta(-5,1)+Li_6(-1)$ a quantity which is not expressible via poly-logarithms. Now, my question is here quite humble. Can we push this thread up one step further and compute the result for $p=6$? Is the quantity in question also "new" or can it be reduced to the univariate zeta functions only?
I have used the following code to check in http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi for possible linear dependencies between the quantity in question and zeta functions.
lindep([zp(2,6,1)+zp(2,7), z(7), z(2)^3*log(2), z(3)^2*log(2), z(5)*log(2)^2, z(5)*z(2), z(2)^2*z(3), z(2)^2*log(2)^3, z(3)*log(2)^4, z(2)*log(2)^5, log(2)^7, zp(2,4)*log(2)^3, zp(2,5)*log(2)^2, zp(2,6)*log(2), zp(2,7), zp(2,5,1)*log(2)])
Unfortunately I couldn't find any results.