Here is a general version I discovered some time ago.
Proposition : $$\sum_{r=1}^{n} \dfrac{H_{r} ^{(m)}}{r^m} = \dfrac{1}{2} \left( [H_{n}^{(m)}]^2 + H_{n}^{(2m)} \right) \quad ; \quad m \geq 1$$
Proof : Expand the summation, using the definition of $\displaystyle H_{r}^{(m)}$ , to see that $$\displaystyle \sum_{r=1}^{n} \dfrac{H_{r}^{(m)}}{r^m} = \sum_{r=1}^{n} \dfrac{1}{r^{2m}} + \sum_{r < j} \sum_{j=2}^{n} \dfrac{1}{rj} = H_{n}^{(2m)} + \sum_{r < j} \sum_{j=2}^{n} \dfrac{1}{rj} $$
And,
$\displaystyle [H_{n}^{(m)}]^2 = H_{n}^{(2m)} + 2\sum_{r < j} \sum_{j=2}^{n} \dfrac{1}{rj} $
Eliminating $\displaystyle \sum_{r < j} \sum_{j=2}^{n} \dfrac{1}{rj}$ from the above equations, we have,
$$\displaystyle \sum_{r=1}^{n} \dfrac{H_{r}^{(m)}}{r^m} =\dfrac{1}{2} \left( [H_{n}^{(m)}]^2 + H_{n}^{(2m)} \right) \quad \square \tag{*} $$
Now put $m=2$ take limit to infinity to get the desired result.
We can also derive the result using Summation By Parts.