2

I refer to this answer.

The answer is based on several simplification steps, all of them proven by induction.

  • $S_n = 2903^n - 803^n - 464^n + 261^n$
  • $T_n = 2642\cdot2903^n - 542\cdot803^n - 203\cdot464^n$
  • $U_n = 6443838\cdot2903^n - 183738\cdot803^n$

are all proven to be divisible by 1897.

  • First statement is the original statement from the question.
  • Second statement is the induction step for the first statement.
  • Third statement is the induction step for the second statement.

Is there a name for the method applied there? "Cascade induction", let's say?

Bill Dubuque
  • 272,048
VividD
  • 15,966
  • If you told me about "cascade induction" without saying what you mean specifically, I would assume you meant something like induction with respect to two (or more) natural numbers, which is really just a special case of transfinite induction. This is just your run-of-the-mill induction: we prove inductively that for each $n$, all the numbers $U_n,T_n,S_n$ are divisible by $1897$. Or three inductions, depending on how you think about it: first, you inductively prove that each $U_n$ is divisible by $1897$, then for $T_n,S_n$. Either way, nothing nonstandard to warrant a special name. – tomasz Apr 26 '15 at 20:08
  • but each proof relies on the proof one level bellow, they are not independent, except the last one which is 'plain' induction @tomasz but ok, it could be just an insignificant idea – VividD Apr 26 '15 at 20:13
  • 1
    Again, consider $\varphi(n)=(1897| S_n\land 1897| T_n\land 1897|U_n)$. Then you can prove $\varphi(n)$ by standard induction. – tomasz Apr 26 '15 at 20:16

1 Answers1

2

What is being cascaded is not induction but, rather, telescopy (essentially to construct the difference operator / recurrence that annihilates $\,f_n = S_n).\ $ The telescopic step is this:

Theorem $\ \ m\mid f_n= a^n\! + g_n\,$ for all $\,n\iff m\mid g_{n+1}\!-ag_n\,$ for all $\,n,\,$ and $\,m\mid f_0$

Proof $\ (\Rightarrow)\ \ f_{n+1}\!-af_n = g_{n+1}\!-ag_m\,$ so $\,m\mid f_{n+1},f_n\Rightarrow\, m\mid{\rm\small LHS}\Rightarrow m\mid\rm\small RHS$.

$\ (\Leftarrow)\ $ Induction Base: $\,m\mid f_0\,$ by hypothesis. Step: $\,m\mid f_n,{\rm\small RHS}$ $\,\Rightarrow\, m\mid{\rm\small RHS}+ a f_n = f_{n+1}$

Remark $\, $ Let $S\,$ be the linear $\,n$-shift $\,S f_n = f_{n+1}.\,$ Then $\,(S\!-\!a) a^n = a^{n+1}\!-a a^n = 0.\,$ Thus $\, (S-a)(S-b)(S-c)(S-d)\,$ kills $\,f_n = a^n + b^n + c^n + d^n.\,$ This yields an order $4$ constant coef recurrence for $\,f_n,\,$ say $\,f_{n+4} = c_3 f_{n+3} + c_2 f_{n+2} + c_1 f_{n+1} + c_0 f_n.\,$ So by (strong) induction we deduce that $\,\forall n\!: m\mid f_n$ $\iff m\mid f_0,f_1,f_2,f_3,\,$ thus $\,\gcd(f_0,f_1,\ldots) = \gcd(f_0,f_1,f_2,f_3).\,$ The linked proof amounts to constructing this recurrence in $4$ steps, using the above Theorem for each step, which amounts to applying $\,S\!-\!a\,$ to kill $\,a^n,\,$ then applying $\,S\!-\!b\,$ to kill $\,b^n,\,\ldots$

Thus the linked proof can be greatly simplified once one observes that the form of $\,f_n\,$ implies that it satisfies an order $4$ recurrence, so we need only check the first $4$ values. But we can simplify the proof even further. As I mention in my answer there, by symmetry, it suffices to check that $\{2903,\, 261\}\ \equiv\ \{803,\, 464\}\,\ {\rm mod}\,\ 271 \ \,\&\,\ 7.\,$ Then the induction is encapsulated in the well-known Congruence Power Rule $\, A\equiv a\,\Rightarrow\, A^n\equiv a^n.\,$ This is a prototypical example of how exploiting innate symmetry leads to great simplification.

Bill Dubuque
  • 272,048