If $$ax+by=7$$ $$ax^2+by^2=49$$ $$ax^3+by^3=133$$ $$ax^4+by^4=406$$ then find the value of $$2014(x+y-xy) - 100(a+b)$$
My attempt: $$ax^2+by^2=49$$ $$ax^2+by^2=(ax+by)^2$$ $$ax^2+by^2=a^2x^2+2abxy+b^2y^2$$ $$ax^2-a^2x^2+by^2-b^2y^2=2abxy$$ $$ax^2(1-a)+by^2(1-b)=2abxy$$