10

I have to prove that $$\sum_{k=1}^\infty \frac{1}{k(k+1)(k+2)\cdots (k+p)}=\dfrac{1}{p!p}$$

How can I do that?

Did
  • 279,727
Juliane
  • 403

2 Answers2

15

Note that $$ \frac{1}{k(k\!+\!1)(k\!+\!2)\cdots (k\!+\!p)}=\frac{1}{p}\!\left(\frac{1}{k(k\!+\!1)\cdots (k\!+\!p\!-\!1)}-\frac{1}{(k\!+\!1)(k\!+\!2)\cdots (k\!+\!p)}\right) $$ Hence $$ \sum_{k=1}^n\frac{1}{k(k+1)(k+2)\cdots (k+p)}=\\=\frac{1}{p}\left(\frac{1}{p!}-\frac{1}{(n+1)(n+2)(n+3)\cdots (n+p)}\right) \to \frac{1}{p!p} $$ as $n\to\infty$.

Similarly, $$ \sum_{k=1}^n\frac{1}{(k+1)(k+2)\cdots (k+p)}=\\=\frac{1}{p-1}\left(\frac{1}{p!}--\frac{1}{(n+2)(n+2)(n+3)\cdots (n+p)}\right) \to \frac{1}{p!(p-1)} $$

2

Simpler answer: Telescope

for fixed $p\in\Bbb N$ If we let $u_n =\frac1{n(n+1)\cdots(n+p-1)}$

then,

$u_n -u_{n+1} = \frac1{n(n+1)\cdots(n+p-1)}-\frac1{(n+1)(n+2)\cdots(n+p)} =\frac p{n(n+1)\cdots(n+p)}$

Hence By Telescoping sum we get, $$ u_1 = u_1-\lim_{n\to \infty}u_{n+1}=\sum_{n=1}^{\infty} (u_n -u_{n+1}) = p\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)\cdots (n+p)}$$

But $u_1 = \frac1{1(1+1)\cdots(1+p-1)} = \frac{1}{p!}$

Hence $$ \color{red}{\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)\cdots (n+p)} = \frac{1}{p!p}}$$

Guy Fsone
  • 23,903
  • Why a Down vote please? – Guy Fsone Oct 30 '17 at 19:45
  • 3
    I did not downvote but your answer is very similar to the first answer, which seems to be quite older then your answer. If the first answer was not correct you should have commented on that instead if giving a new answer. – MrYouMath Oct 30 '17 at 19:55