Another approach is to note that the summand can be expressed as
$$
{1 \over {\left( {n + q} \right)\left( {n + q + 1} \right) \cdots \left( {n + p} \right)}} = {1 \over {\left( {n + q} \right)^{\;\overline {\,p - q + 1} } }} =
\left( {n + q - 1} \right)^{\,\underline {\, - \,\left( {p - q + 1} \right)} }
$$
where $x^{\;\overline {\,m\,} } $ is the Rising Factorial and
$x^{\,\underline {\,m\,} } $ is the Falling Factorial.
Then the Indefinite Sum (anti-difference) of the Falling factorial is
$$
\sum\nolimits_{\;x} {x^{\,\underline {\,m\,} } } = \left\{ {\matrix{
{{1 \over {m + 1}}\;x^{\,\underline {\,m + 1\,} } + c} & { - 1 \ne m} \cr
{\psi (x + 1) + c} & { - 1 = m} \cr
} } \right.
$$
which is not difficult to demonstrate.
Therefore
$$
\eqalign{
& \sum\limits_{n = 1}^\infty {{1 \over {\left( {n + q} \right)\left( {n + q + 1} \right) \cdots \left( {n + p} \right)}}} = \cr
& = \sum\limits_{n = 1}^\infty {\left( {n + q - 1} \right)^{\,\underline {\, - \,\left( {p - q + 1} \right)\,} } } = \sum\limits_{k = q}^\infty {k^{\,\underline {\, - \,\left( {p - q + 1} \right)\,} } } = \cr
& = {1 \over {p - q}}\;q^{\,\underline {\, - \,\left( {p - q} \right)\,} } = {1 \over {\left( {p - q} \right)\left( {q + 1} \right)^{\overline {\,\left( {p - q} \right)\,} } }} = {1 \over {\left( {p - q} \right)\left( {q + 1} \right)^{\overline {\, - \,q\,} } 1^{\overline {\,p\,} } }} = \cr
& = {{q!} \over {\left( {p - q} \right)p!}}\quad \left| {\;p \le q} \right. \cr}
$$