$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\sum_{n = 1}^{\infty}
{1 \over n\pars{n + 1}\ldots\pars{n + p}}} =
\sum_{n = 1}^{\infty}{1 \over n^{\,\overline{p + 1}}} =
\sum_{n = 1}^{\infty}{1 \over \Gamma\pars{n + p + 1}/\Gamma\pars{n}}
\\[5mm] = &\
{1 \over p!}\sum_{n = 1}^{\infty}{\Gamma\pars{n}\Gamma\pars{p + 1} \over \Gamma\pars{n + p + 1}} =
{1 \over p!}\sum_{n = 1}^{\infty}\int_{0}^{1}t^{n - 1}\pars{1 - t}^{\, p}
\,\dd t
\\[5mm] = &\
{1 \over p!}\int_{0}^{1}\pars{\sum_{n = 1}^{\infty}t^{n - 1}}
\pars{1 - t}^{\, p}\,\dd t =
{1 \over p!}\int_{0}^{1}{1 \over 1 - t}\,\pars{1 - t}^{\, p}\,\dd t
\\[5mm] = &\
{1 \over p!}\int_{0}^{1}t^{\, p - 1}\,\dd t =
\bbx{{1 \over p}\,{1 \over p!}}
\end{align}