Intro: In the following we assume that the function $f$ is sufficiently often differentiable. Let
\begin{align*}
g_n(x) = \sum_{k=1}^{n}B_{n,k}(f'(x),f''(x),\dots,f^{(n-k+1)}(x))\qquad\qquad n\geq 1
\end{align*}
Since the differential operator $\frac{d}{dx}$ is linear, we get
\begin{align*}
\frac{d}{dx}g_n(x)&=\frac{d}{dx}\left(\sum_{k=1}^{n}B_{n,k}(f'(x),f''(x),\dots,f^{(n-k+1)}(x))\right)\\
&=\sum_{k=1}^{n}\frac{d}{dx}B_{n,k}(f'(x),f''(x),\dots,f^{(n-k+1)}(x))\\
\end{align*}
and concentrate therefore on:
\begin{align*}
\frac{d}{dx}B_{n,k}(f'(x),f''(x),\dots,f^{(n-k+1)}(x))\qquad\qquad n,k\geq 1
\end{align*}
In the following we use the abbreviation
$$B_{n,k}^f(x):=B_{n,k}(f'(x),f''(x),\dots,f^{(n-k+1)}(x))\qquad\qquad n,k\geq 1$$
We will show that
The following is valid:
\begin{align*}
\frac{d}{dx}&B_{n,k}^f(x)=B_{n+1,k}^f(x)-f^{\prime}(x)B_{n,k-1}^f(x)\tag{1}\\
\\
B_{n,k}^f(x)&=\frac{1}{k!}\sum_{j=0}^k\binom{k}{j}\left(-f(x)\right)^{k-j}\frac{d^n}{dx^n}\left(f(x)\right)^j\tag{2}
\end{align*}
Note:
The expression (2) should be useful for calculations around $B_{n,k}$. We will use it to show (1).
The recurrence relation (1) can also be used to build a Pascal-like triangle of $B_{n,k}$ starting with $B_{1,1}^f(x)=f^{\prime}(x)$.
\begin{array}{ccccccc}
&&&B_{1,1}&\\
&&B_{2,1}&&B_{2,2}&\\
&B_{3,1}&&B_{3,2}&&B_{3,3}&\\
B_{4,1}&&B_{4,2}&&B_{4,3}&&B_{4,4}\\
&&&\ldots&&&\\
\end{array}
\begin{align*}
B_{1,1}&=f^{\prime}&\\
B_{2,1}&=\frac{d}{dx}B_{1,1},&B_{2,2}&=f^{\prime}\cdot B_{1,1}\\
B_{3,1}&=\frac{d}{dx}B_{2,1},&B_{3,2}&=f^{\prime}\cdot B_{2,1}+\frac{d}{dx}B_{2,2},&B_{3,3}&=f^{\prime}\cdot B_{2,2}&\\
B_{4,1}&=\frac{d}{dx}B_{3,1},&B_{4,2}&=f^{\prime}\cdot B_{3,1}+\frac{d}{dx}B_{3,2},&B_{4,3}&=f^{\prime}\cdot B_{3,2}+\frac{d}{dx} B_{3,3},&\ldots\\
&\ldots&
\end{align*}
Proof of (2):
\begin{align*}
B_{n,k}^f(x)&=\frac{1}{k!}\sum_{j=0}^k\binom{k}{j}\left(-f(x)\right)^{k-j}\frac{d^n}{dx^n}\left(f(x)\right)^j
\end{align*}
We start with the Taylor series expansion of $y=y(z)$ at a point $x$:
\begin{align*}
y(x+z)=\sum_{n\geq 0}y^{(n)}(x)\frac{z^n}{n!}\tag{3}
\end{align*}
We consider the composition $y=g\circ f$ of sufficiently often differentiable functions $f$ and $g$ and get according to (3)
\begin{align*}
g\left(f(x+z)\right)=\sum_{k\geq 0}\frac{d^k}{dx^k}g\left(f(x)\right)\frac{z^k}{k!}\tag{4}
\end{align*}
We also get according to (3) for proper differentiable functions $u$ and $v$
\begin{align*}
g(u+v)=\sum_{k\geq 0}\frac{d^k}{du^k}g(u)\frac{v^k}{k!}\tag{5}
\end{align*}
Now letting $u=f(x)$ and $v=f(x+z)-f(x)$ and substituting it in (5) we get
\begin{align*}
g\left(f(x+z)\right)=\sum_{k\geq 0}\frac{d^k}{df^k}g\left(f(x)\right)\frac{1}{k!}\left(f(x+z)-f(x)\right)^k\tag{6}
\end{align*}
We now consider (6) as series in $z$ and compare the coefficients of $z^n$ in (6) with the coefficients of $z^n$ in (4). Using the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$, we observe:
\begin{align*}
\frac{d^n}{dx^n}g\left(f(x)\right)&=n![z^n]\sum_{k\geq 0}\frac{d^k}{df^k}g\left(f(x)\right)\frac{1}{k!}\left(f(x+z)-f(x)\right)^k\tag{7}\\
&=\sum_{k=0}^{n}\frac{g^{(k)}\left(f(x)\right)}{k!}
\left.\left(\frac{d^n}{dz^n}\left(f(x+z)-f(x)\right)^k\right)\right|_{z=0}\tag{8}\\
&=\sum_{k=0}^{n}\frac{g^{(k)}\left(f(x)\right)}{k!}
\left.\left(\frac{d^n}{dz^n}\sum_{j=0}^{k}\binom{k}{j}\left(f(x+z)\right)^j\left(-f(x)\right)^{k-j}\right)\right|_{z=0}\tag{9}\\
&=\sum_{k=0}^{n}\frac{g^{(k)}\left(f(x)\right)}{k!}
\sum_{j=0}^{k}\binom{k}{j}\left(-f(x)\right)^{k-j}\left.\left(\frac{d^n}{dz^n}\left(f(x+z)\right)^j\right)\right|_{z=0}\tag{10}\\
&=\sum_{k=0}^{n}\frac{g^{(k)}\left(f(x)\right)}{k!}
\sum_{j=0}^{k}\binom{k}{j}\left(-f(x)\right)^{k-j}\left(\frac{d^n}{dx^n}\left(f(x)\right)^j\right)\tag{11}\\
\end{align*}
Comment:
(7) Comparison of the coefficients of $z^n$ in (6) and (4)
(8) Note that $n!$ times the coefficient of $z^n$ can be written as the $n$-th derivative. Observe also that since the Taylor series expansion of $f(x+z)-f(x)$ at the point $x$ starts with $z^1$, we can restrict the index range to $0\leq k \leq n$.
(9) Application of the binomial theorem
(10) Linearity of $\frac{d^n}{dz^n}$ operator
(11) Observe, that taking $n$ derivatives of $f(z+x)^j$ with respect to $z$ and then setting $z=0$ in (10) is equivalently, by the chain rule to take $n$ derivatives of $\left(f(z+x)\right)^j$ with respect to $z+x$ and then setting $z=0$. And this is the same as taking $n$ derivatives of $\left(f(x)\right)^j$ with respect to $x$.
Next we consider the well-known formula of Faà di Bruno of the $n$-th derivative of composites of functions:
\begin{align*}
\frac{d^n}{dx^n}g\left( f(x)\right)=\sum_{k=0}^ng^{(k)}\left(f(x)\right)B_{n,k}(f^{\prime}(x),\ldots,f^{(n-k+1)}(x))\tag{12}
\end{align*}
Comparing (11) with (12) gives
\begin{align*}
B_{n,k}^f(x)&=\frac{1}{k!}\sum_{j=0}^k\binom{k}{j}\left(-f(x)\right)^{k-j}\frac{d^n}{dx^n}\left(f(x)\right)^j
\end{align*}
and (2) follows.
Proof of (1):
\begin{align*}
\frac{d}{dx}&B_{n,k}^f(x)=B_{n+1,k}^f(x)-f^{\prime}(x)B_{n,k-1}^f(x)\end{align*}
We use the identity (2) and we observe:
\begin{align*}
\frac{d}{dx}B_{n,k}\left(f(x)\right)&=\frac{1}{k!}\frac{d}{dx}\sum_{j=0}^k\binom{k}{j}\left(-f(x)\right)^{k-j}\frac{d^n}{dx^n}\left(f(x)\right)^j\\
&=\frac{1}{k!}\sum_{j=0}^k\binom{k}{j}(k-j)\left(-f(x)\right)^{k-j-1}\left(-f^{\prime}(x)\right)\frac{d^n}{dx^n}\left(f(x)\right)^j\\
&\qquad+\frac{1}{k!}\sum_{j=0}^k\binom{k}{j}\left(-f(x)\right)^{k-j}\frac{d^{n+1}}{dx^{n+1}}\left(f(x)\right)^j\\
&=-f^{\prime}(x)\frac{1}{k!}\sum_{j=0}^{k-1}\binom{k-1}{j-1}k\left(-f(x)\right)^{(k-1)-j}\frac{d^n}{dx^n}\left(f(x)\right)^j\\
&\qquad+B_{n+1,k}^f(x)\\
&=-f^{\prime}(x)B_{n,k-1}^f(x)+B_{n+1,k}^f(x)
\end{align*}
and (1) follows.
Note: This proof was derived from the nice paper The Curious History of Faà di Bruno's Formula by Warren P. Johnson.