Let us replace: $x_{i}=a_{i}(x)$.
$$B_{n,k}(a_{1}(x),a_{2}(x),...,a_{n-k+1}(x))=\sum_{^{\sum_{i=1}^{n-k+1}j_{i}=k}_{\sum_{i=1}^{n-k+1}i!j_{i}=n}}\frac{n!}{\prod_{i=1}^{n-k+1}i!^{j_{i}}j_{i}!}\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}$$
For abbreviation, we write
$$B_{n,k}(a_{1}(x),a_{2}(x),...,a_{n-k+1}(x))=\sum_{\pi(n,k)}\frac{n!}{\prod_{i=1}^{n-k+1}i!^{j_{i}}j_{i}!}\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}},$$
where $\pi(n,k)=\pi_{n,k}(j_{1},j_{2},...,j_{n-k+1})$ and $\pi(n,k)$ is the partition of integer $n$ with exactly $k$ parts.
$$\frac{d}{dx}B_{n,k}(a_1(x),a_2(x),...,a_{n-k+1}(x))=\sum_{\pi(n,k)}\frac{n!}{\prod_{i=1}^{n-k+1}i!^{j_{i}}j_{i}!}\left(\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}\right)'$$
$$\left(\prod_{i=1}^{n-k+1}f_{i}(x)\right)'=\sum_{l=1}^{n-k+1}\frac{f'_{l}(x)}{f_{l}(x)}\prod_{i=1}^{n-k+1}f_{i}(x)$$
$$\left(\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}\right)'=\sum_{l=1}^{n-k+1}\frac{\left(a_{l}(x)^{j_{l}}\right)'}{a_{l}(x)^{j_{l}}}\prod_{i=1}^{n-k+1}a_{l}(x)^{j_{l}}$$
$$\left(a_{l}(x)^{j_{l}}\right)'=j_{l}a_{l}(x)^{j_{l}-1}a'_{l}(x)=j_{l}a_{l}(x)^{j_{l}-1}a_{l+1}(x)$$
$$\left(\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}\right)'=\sum_{l=1}^{n-k+1}j_{l}\frac{a_{l+1}(x)}{a_{l}(x)}\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}$$
$$\frac{d}{dx}B_{n,k}(a_{1}(x),a_{2}(x),...,a_{n-k+1}(x))=\sum_{\pi(n,k)}\frac{n!}{\prod_{i=1}^{n-k+1}i!^{j_{i}}j_{i}!}\sum_{l=1}^{n-k+1}j_{l}\frac{a_{l+1}(x)}{a_{l}(x)}\prod_{i=1}^{n-k+1}a_{i}(x)^{j_{i}}$$
Another formula is written in Manipulation of Bell polynomials equation (1).