Let $( b_{k,n} )_{k, n\in\mathbb{Z}_{+}}$ be the double sequence defined by
$$b_{k,n} = \begin{cases}
0,& n \le k\\
\left(1 - \frac{k}{n}\right)^n,& n \ge k\\
\end{cases}$$
We have
$$\sum_{k=1}^n \left(\frac{k}{n}\right)^n = \sum_{k=0}^{n-1}\left(1 - \frac{k}{n}\right)^n = 1 + \sum_{k=1}^\infty b_{k,n}$$
This implies
$$\lim_{n\to\infty}\sum_{k=1}^n \left(\frac{k}{n}\right)^n = 1 + \lim_{n\to\infty} \sum_{k=1}^\infty b_{k,n}\tag{*1}
$$
If we fix $k$, then for any $n \ge k$, apply AM $\ge$ GM to the list of numbers
consisting of $n$ copies of $1 - \frac{k}{n}$ and $1$ copy of $1$, we get
$$\left(1 - \frac{k}{n}\right)^{\frac{n}{n+1}} \le \frac{1}{n+1}\left[n\left(1-\frac{k}{n}\right) + 1\right] = 1 - \frac{k}{n+1}
\quad\implies\quad b_{k,n} \le b_{k,n+1}
$$
So for each fixed $k$, $b_{k,n}$ as a sequence of $n$ is non-negative and monotonic increasing. Furthermore, we know
$$\lim_{n\to\infty} b_{k,n} = \lim_{n\to\infty} \left(1 - \frac{k}{n}\right)^n
= \lim_{n\to\infty} \left(1 - \frac{k}{n}\right)^{\frac{n}{k}k}
= \left(\lim_{x\to 0}(1 - x)^{\frac{1}{x}}\right)^k
= e^{-k}$$
By monotone convergence theorem for series${}^{\color{blue}{[1]}}$, we can exchange the limit and summation in $(*1)$ and get
$$\lim_{n\to\infty}\sum_{k=1}^n \left(\frac{k}{n}\right)^n = 1 + \sum_{k=1}^\infty \left(\lim_{n\to\infty} b_{k,n}\right)
= 1 + \sum_{k=1}^\infty e^{-k} = \frac{e}{e-1}$$
Notes
- $\color{blue}{[1]}$ for the statement and a proof of monotone convergence theorem for series, see this (on web-archive).