$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\lim_{n\to \infty}\braces{n\bracks{{\expo{} \over \expo{} - 1} -
\sum_{k = 1}^{n}\pars{k \over n}^{n}}}:\ ?
\label{1}\tag{1}
\end{equation}
The main contribution to the sum $\ds{\sum_{k = 1}^{n}k^{n}}$ ocurrs for values of $\ds{k \approx n}$. In order to derive an asymptotic approximation as
$\ds{n \to \infty}$ we can use the $\color{#f66}{Laplace\ Methods\ for\ Sums}$
as explained in, for example, ( $\color{#44f}{Analytic Combinatorics}$ by
Philippe Flajolet and
Robert Sedgewick, page $761$, Cambridge University Press 2009 ).
\begin{align}
\left.{1 \over n^{n}}\sum_{k = 1}^{n}k^{n}\,\right\vert_{\ n\ >\ 0} & =
{1 \over n^{n}}\sum_{k = 0}^{n}\pars{n - k}^{n} =
\sum_{k = 0}^{n}\pars{1 - {k \over n}}^{n} =
\sum_{k = 0}^{n}
\exp\pars{n\ln\pars{1 - {k \over n}}}
\\[5mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
\sum_{k = 0}^{\infty}
\expo{-k}\pars{1 - {k^{2} \over 2n}} +
\,\mrm{O}\pars{1 \over n^{2}}
\\[5mm] & =
{\expo{} \over \expo{} - 1} -
\color{#f00}{\expo{}\pars{\expo{} + 1} \over 2\pars{\expo{} - 1}^{3}}
\,{1 \over n} +
\,\mrm{O}\pars{1 \over n^{2}}
\end{align}
such that the requested limit, in \eqref{1}, becomes
$$\bbox[15px,#ffe,border:1px groove navy]{\ds{%
\lim_{n\to \infty}\braces{n\bracks{{\expo{} \over \expo{} - 1} -
\sum_{k = 1}^{n}\pars{k \over n}^{n}}} =
{\expo{}\pars{\expo{} + 1} \over 2\pars{\expo{} - 1}^{3}}
\approx 0.99614738356249369646\ldots}}
$$