As your preliminary calculation shows, the upper half of the terms yields the same sum in the limit, whereas the sum of the lower half goes to zero. We can apply Tannery’s theorem separately to each half:
$$
\sum_{k=1}^n\left(\frac kn\right)^k=\sum_{k=1}^{\left\lfloor\frac n2\right\rfloor}\left(\frac kn\right)^k+\sum_{k=\left\lceil\frac n2\right\rceil}^n\left(\frac kn\right)^k\;.
$$
For the lower half,
$$
\left(\frac kn\right)^k\le\left(\frac12\right)^k\quad\text{and}\quad\lim_{n\to\infty}\left(\frac kn\right)^k=0
$$
so Tannery’s theorem applies with $\sum_{k=1}^\infty\left(\frac12\right)^k=1\lt\infty$, yielding
$$
\lim_{n\to\infty}\sum_{k=1}^{\left\lfloor\frac n2\right\rfloor}\left(\frac kn\right)^k=\sum_{k=1}^\infty\lim_{n\to\infty}\left(\frac kn\right)^k=0\;.
$$
For the upper half, we can apply your transformation of the summation index to write it as
$$
\sum_{k=\left\lceil\frac n2\right\rceil}^n\left(\frac kn\right)^k=\sum_{k=0}^{n-\left\lceil\frac n2\right\rceil}\left(1-\frac kn\right)^{n-k}\;.
$$
Differentiating the logarithm of the summand with respect to $n$ yields $\log\left(1-\frac kn\right)+\frac kn\le0$. Since the terms decrease with $n$ and $n\ge2k$, we obtain an upper bound for $n=2k$. Thus, in this half,
$$
\left(1-\frac kn\right)^{n-k}\le\left(1-\frac k{2k}\right)^{2k-k}=\left(\frac12\right)^k\quad\text{and}\quad\lim_{n\to\infty}\left(1-\frac kn\right)^{n-k}=\mathrm e^{-k}\;,
$$
so Tannery’s theorem applies with $\sum_{k=0}^\infty\left(\frac12\right)^k=2\lt\infty$, yielding
$$
\lim_{n\to\infty}\sum_{k=0}^{n-\left\lceil\frac n2\right\rceil}\left(1-\frac kn\right)^{n-k}=\sum_{k=0}^\infty\lim_{n\to\infty}\left(1-\frac kn\right)^{n-k}=\sum_{k=0}^\infty {\mathrm e}^{-k}=\frac{\mathrm e}{\mathrm e-1}\;.
$$
Together, this shows that
$$
\lim_{n\to\infty}\sum_{k=1}^n\left(\frac kn\right)^k=\frac{\mathrm e}{\mathrm e-1}\;.
$$