$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x:\ {\large ?}}$.
\begin{align}
&\color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x}
=\int_{x\ =\ 0}^{x\ =\ 1}\ln\pars{1 - x}\dd\bracks{x\ln\pars{x} - x + 1}
\\[3mm]&=\left.\bracks{x\ln\pars{x} - x + 1}\ln\pars{1 - x}\right\vert_{0}^{1}
-\int_{0}^{1}\bracks{x\ln\pars{x} - x + 1}\,{-1 \over 1 - x}\,\dd x
=\int_{0}^{1}{x\ln\pars{x} \over 1 - x}\,\dd x + 1
\\[3mm]&=-\lim_{\mu\ \to\ 1}\partiald{}{\mu}
\int_{0}^{1}{1 - x^{\mu} \over 1 - x}\,\dd x + 1
=-\lim_{\mu\ \to\ 1}\partiald{\Psi\pars{\mu + 1}}{\mu} + 1
\end{align}
where $\ds{\Psi\pars{z}}$ is the
Digamma Function
$\ds{\bf 6.3.1}$ and we used the identity $\ds{\bf 6.3.22}$.
$$
\color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x}
=-\Psi'\pars{2} + 1=-\Psi'\pars{1} + 2=-\zeta\pars{2} + 2
$$
Here we used the identities:
$$
\Psi'\pars{z + 1} = \Psi'\pars{z} - {1 \over z^{2}}\,,\qquad
\Psi^{\rm\pars{n}}\pars{1}=\pars{-1}^{n + 1}\,n!\,\zeta\pars{n + 1}\,,\quad n = 1,2,3,\ldots
$$
Since $\ds{\zeta\pars{2} = {\pi^{2} \over 6}}$:
$$
\color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x}
=\color{#66f}{\large 2 - {\pi^{2} \over 6}} \approx {\tt 0.3551}
$$