0

Evaluate $$\int_{0}^{1} \ln (x) \ln(1-x) dx$$

Dando18
  • 5,368

1 Answers1

8

$$\int_0^1 \ln(x) \ln(1-x) dx = -\int_0^1 \ln(x) \sum_{n=1}^\infty \frac{x^n}{n} dx \\ =-\sum_{n=1}^\infty \frac{1}{n} \int_0^1 x^n \ln(x) dx $$ So, let $I_n = \int_0^1 x^n \ln(x) dx$. Using integration by parts, we see $I_n = -\frac{1}{(n+1)^2}$, so $$\int_0^1 \ln(x) \ln(1-x) dx = \sum_{n=1}^\infty \frac{1}{n(n+1)^2} \\ = \sum_{n=2}^\infty \frac{1}{(n-1)n^2} \\ = \sum_{n=2}^\infty \frac{1}{n-1} - \frac{1}{n}-\frac{1}{n^2} \\ = \sum_{n=2}^\infty \left(\frac{1}{n-1} - \frac{1}{n}\right)- \sum_{n=2}^\infty\frac{1}{n^2} \\ = \frac{1}{2-1} - \left(\frac{\pi^2}{6} - 1\right) \\ = 2 - \frac{\pi^2}{6} \\$$

B. Mehta
  • 12,774