$
\newcommand{\I}{\mathcal{J}}
\newcommand{\d}{\mathrm{d}}
$First, let's try to find
$$\I_n := \int_0^1 x^n \ln(x) \, \d x$$
(which is what you meant to write in the integral). Integration by parts (differentiating $\ln(x)$ and integrating $x^n$) gives us
$$\I_n = \frac{1}{n+1} x^n \ln(x) \bigg|_0^1- \frac{1}{n+1} \int_0^1 x^{n} \, \d x$$
To evaluate this properly, we need
$$L := \lim_{x \to 0^+} x^n \ln(x)$$
Using L'Hopital's rule suffices:
$$L = \lim_{x \to 0^+} \frac{\ln(x)}{x^{-n}} = \lim_{x \to 0^+} \frac{1/x}{-nx^{-n-1}} = \lim_{x \to 0^+} - \frac 1 n x^n = 0$$
Thus, we readily can see that (by finishing the evaluation and then evaluating the remaining trivial integral),
$$\I_n =- \frac{1}{(n+1)^2}$$
Now we have that your integral is equal to
$$I = \sum_{n=1}^\infty \frac{(-1)^{n}}{n(n+1)^2}$$
A simple decomposition of the summands then gives
$$I = \sum_{n=1}^\infty \left( \frac{(-1)^{n}}{n} - \frac{(-1) ^{n}}{n+1} - \frac{(-1) ^{n}}{(n+1)^2} \right)$$
Assuming the necessary convergence properties, we can split this up:
$$I = \sum_{n=1}^\infty \frac{(-1)^{n}}{n} - \sum_{n=1}^\infty\frac{(-1)^{n}}{n+1} - \sum_{n=1}^\infty\frac{(-1)^{n}}{(n+1)^2} $$
We then reindex the right two sums and factor $-1$ from the first:
$$I =- \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} -\sum_{n=2}^\infty\frac{(-1)^{n -1}}{n } - \sum_{n=2}^\infty\frac{(-1)^{n-1 }}{n^2} $$
Then we write this in terms of the Dirichlet eta function $\eta(s)$:
$$I = -\eta(1) - (\eta(1) - 1) - (\eta(2) - 1) =- 2 \eta(1) -\eta(2) + 2$$
We know $\eta(1) = \ln(2)$ and $\eta(2) = \pi^2/12$, letting us conclude.