I need to evaluate the following integral:
$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-\frac{1}{2}(x^2-xy+y^2)}dx\, dy$$
I thought of evaluating the iterated integral $\displaystyle\int_{-\infty}^{\infty}dx\int_{-\infty}^{\infty}e^{-\frac{1}{2}(x^2-xy+y^2)}dy$, but because of the presence of $x^2$ and $y^2$ terms, I am not being able to do that. I tried substituting $x=r\cos \theta$ and $y=r\sin \theta$ but in that case I have some confusion regarding the limits of $r$ and $\theta$. Can I get some help?