You can even do it with $(x,y)$. Complete the square first
$$\int{ \frac{1}{2\pi}} e^{{{-1}\over{2}}(4x^2-2xy+3y^2)} dx=\frac{e^{-\frac{11 y^2}{8}} \text{erf}\left(\frac{4 x-y}{2 \sqrt{2}}\right)}{4
\sqrt{2 \pi }}$$
$$\int_{-\infty}^\infty{ \frac{1}{2\pi}} e^{{{-1}\over{2}}(4x^2-2xy+3y^2)} dx=\frac{e^{-\frac{11 y^2}{8}}}{2 \sqrt{2 \pi }}$$
$$\int \frac{e^{-\frac{11 y^2}{8}}}{2 \sqrt{2 \pi }}\,dy=\frac{\text{erf}\left(\frac{1}{2} \sqrt{\frac{11}{2}} y\right)}{2 \sqrt{11}}$$
$$\int_{-\infty}^\infty \frac{e^{-\frac{11 y^2}{8}}}{2 \sqrt{2 \pi }}\,dy=\frac{1}{\sqrt{11}}$$
In fact, for the most general case
$$I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\frac 1{2\pi} e^{-(ax^2+bxy+by^2)}\,dx\,dy=\frac{1}{\sqrt{4 a c-b^2}}$$ if
$$\Re(a)>0\land \Re\left(\frac{b^2}{a}\right)<4 \Re(c)$$