Let $f(x, y)$ be the given function. $$f(x, y) = ce^{-(x^2 - xy + 4y^2)/2}$$ Determine the value of $c$ such that $f$ is a pdf.
The problem is finding the value of $c$ such that
$$ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ce^{-(x^2 - xy + 4y^2)/2}\,dx\,dy = 1 $$
The usual way of integrating a regular gaussian/normal pdf is by using polar coordinates. However, the values on the exponential above make it harder than usual. I assume there must be some transformation of variables that will make the integral simpler, then you'd need to calculate the jacobian obviously, but I can't see the transformation.