The proof is simpler if you include terms where the lower argument is greater than the upper argument: that is,
$$
F_{n+1}=\sum_{k=0}^{n}\binom{n-k}{k}\tag{1}
$$
The terms where $n-k\lt k$ are $0$.
Initial Values:
For $n=0$, the sum gives $1$.
For $n=1$, the sum gives $1$.
Recursion:
The recursion is satisfied:
$$
\begin{align}
\hspace{-1cm}\sum_{k=0}^{n}\binom{n-k}{k}+\sum_{k=0}^{n+1}\binom{n+1-k}{k}
&=\sum_{k=1}^{n+1}\binom{n+1-k}{k-1}+\sum_{k=0}^{n+1}\binom{n+1-k}{k}\tag{2}\\
&=1+\sum_{k=1}^{n+1}\binom{n+2-k}{k}\tag{3}\\
&=\sum_{k=0}^{n+2}\binom{n+2-k}{k}\tag{4}
\end{align}
$$
Explanation:
$(2)$: reindex the left sum $k\mapsto k-1$
$(3)$: pull out the $k=0$ term from the right sum and use $\binom{n+1}{k}=\binom{n\vphantom{1}}{k}+\binom{n\vphantom{1}}{k-1}$
$(4)$: put back the $k=0$ term
Note, however, that because of the initial values, the sum is actually $F_{n+1}$, and not $F_n$.