I have to proove this this identity which connects Fibonacci sequence and Pascal's triangle:
$$\begin{pmatrix}n\\0\end{pmatrix}+\begin{pmatrix}n-1\\1\end{pmatrix}+\dotsm+\begin{pmatrix}n-\lfloor\frac{n}{2}\rfloor\\\lfloor\frac{n}{2}\rfloor\end{pmatrix} = F_{(n+1)}$$
Example: ${6\choose0} + {5\choose1} + {4\choose2} + {3\choose3} = 13 = F_{7}$