Recursive Solution
Considering an old answer to a related problem, I tried
$$
\begin{align}
a_n
&=\sum_k\binom{n-2k}{k}[3k\le n]\tag{1a}\\[3pt]
&=\sum_k\binom{n-2k-1}{k}[3k\le n]+\sum_k\binom{n-2k-1}{k-1}[3k\le n]\tag{1b}\\[3pt]
&=\sum_k\binom{n-2k-1}{k}[3k\le n]+\sum_k\binom{n-2k-3}{k}[3k+3\le n]\tag{1c}\\
&=a_{n-1}+\color{#C00}{\sum_k\binom{n-2k-1}{k}\overbrace{([3k\le n]-[3k\le n-1])}^{[n=3k]}}\tag{1d}\\
&\phantom{={}}+a_{n-3}+\color{#090}{\sum_k\binom{n-2k-3}{k}\overbrace{([3k+3\le n]-[3k\le n-3])}^0}\tag{1e}\\[12pt]
&=a_{n-1}+a_{n-3}+\color{#C00}{[n=0]}+\color{#090}{0}\tag{1f}\\[21pt]
&=a_{n-1}+a_{n-3}+[n=0]\tag{1g}
\end{align}
$$
Explanation:
$\text{(1b)}$: apply Pascal's Rule
$\text{(1c)}$: substitute $k\mapsto k+1$ in the second sum
$\text{(1d)}$: add and subtract $a_{n-1}$ from the left term of $\text{(1c)}$
$\text{(1e)}$: add and subtract $a_{n-3}$ from the right term of $\text{(1c)}$
$\text{(1f)}$: $\binom{k-1}{k}=[k=0]$
$\text{(1g)}$: simplify
$\text{(1a)}$ says that $a_n=0$ for $n\lt0$. $\text{(1g)}$ says that $a_0=1$, and for $n\gt0$,
$$
a_n=a_{n-1}+a_{n-3}\tag2
$$
Thus,
$$
\begin{array}{c|c}n&0&1&2&3&4&5&6&7&8\\\hline a_n&1&1&1&2&3&4&6&9&13\end{array}
$$
Care needs to be taken with the upper limits of the sum, as shown in $\text{(1d)}$ and $\text{(1e)}$, but luckily, the terms cancel for $n\gt0$.
Solution to the Linear Recurrence Equation
A closed form solution to the constant coefficient linear recurrence equation takes the form
$$\newcommand{\csch}{\operatorname{csch}}
a_n=c_1r_1^n+c_2r_2^n+c_3r_3^n\tag3
$$
where $r_1,r_2,r_3$ are roots of $x^3-x^2-1=0$, which, if we substitute $x=t+\frac13$, becomes $t^3-\frac13t=\frac{29}{27}$. Multiplying the identity $4\cosh^3(u)-3\cosh(u)=\cosh(3u)$ by $\frac2{27}$ gives
$$
\left(\frac23\cosh(u)\right)^3-\frac13\left(\frac23\cosh(u)\right)=\frac2{27}\cosh(3u)\tag4
$$
Applying $(4)$, we get the real root
$$
r_1=\frac13+\frac23\cosh\left(\frac13\cosh^{-1}\left(\frac{29}2\right)\right)\tag5
$$
and then, because $r_1+r_2+r_3=r_1r_2r_3=1$, we can compute the complex roots
$$
r_2=\frac{1-r_1}2+i\frac{\sqrt{3r_1^2-2r_1-1}}2\tag{6a}
$$
and
$$
r_3=\frac{1-r_1}2-i\frac{\sqrt{3r_1^2-2r_1-1}}2\tag{6b}
$$
and we can compute the coefficients using Cramer's Rule and Vandermonde Determinants
$$
c_1=\frac{\det\begin{bmatrix}
1&1&1\\
1&r_2&r_3\\
1&r_2^2&r_3^2
\end{bmatrix}}
{\det\begin{bmatrix}
1&1&1\\
r_1&r_2&r_3\\
r_1^2&r_2^2&r_3^2
\end{bmatrix}}
=\frac{r_1^2+1}{r_1^2+3}\tag{7a}
$$
and similarly
$$
c_2=\frac{r_2^2+1}{r_2^2+3}\tag{7b}
$$
and
$$
c_3=\frac{r_3^2+1}{r_3^2+3}\tag{7c}
$$
Now we simply need to plug $(5)$, $(6)$, and $(7)$ into $(3)$ to get a closed form for the solution.
A Simple Closed Form
Note that $|c_2|=|c_3|\approx0.22968031\lt\frac14$. Since $r_1\approx1.46557123\gt1$, and $r_1r_2r_3=1$, we have that $|r_2|=|r_3|\lt1$. Thus, since $\left|c_2r_2^n+c_3r_3^n\right|\lt\frac12$, according to $(3)$, $a_n$ is the closest integer to $c_1r_1^n$:
$$
\begin{array}{r|r|l}
n&a_n&c_1r_1^n\\\hline
0&1&0.61149199\\
1&1&0.89618507\\
2&1&1.31342306\\
3&2&1.92491505\\
4&3&2.82110012\\
5&4&4.13452318\\
6&6&6.05943824\\
7&9&8.88053836\\
8&13&13.0150615\\
\end{array}
$$
Therefore, a simple closed form would be
$$
a_n=\left\lfloor c_1r_1^n+\tfrac12\right\rfloor\tag8
$$
where, computed from $(5)$,
$$
r_1\approx1.4655712318767680267\tag{9a}
$$
and, computed from $\text{(7a)}$,
$$
c_1\approx0.61149199195081251841\tag{9b}
$$
I have an inkling that this might be related to fibonacci sequences, but I'm not sure.
– grand aneww Aug 24 '21 at 16:52