Let $\binom{n}{k}$ denote the binomial coefficient $\frac{n!}{k!(n-k)!}$ and $F_m$ be the $mth$ Fibonacci number given by $F_1=F_2=1$ and $F_{m+2}=F_m+F_{m+1}$ for all $m\geq 1.$ Show that $\sum\binom nk=F_{m+1},$ $\forall m\geq 1.$ Here, the above sum is over all pairs of integers $n\geq k\geq 0,$ with $n+k=m.$
My solution goes like this:
We see that $\sum\binom nk=F_{m+1},$ $\forall m\geq 1,$ is valid, for $m=1.$ Now, assuming $\sum\binom nk=F_{m+1},$ is true. It is to be noted, $n\geq k\geq 0,$ with $n+k=m.$ This, means, $n=m-k$ and $$n\geq k\implies m\geq 2k\implies k\leq \frac m2.$$
We observe, if $$k=0,1,2,\cdots, \lfloor \frac m2\rfloor$$, $$n=m,m-1,m-2,\cdots,m-\lfloor \frac m2\rfloor$$, respectively. $$\sum\binom nk=\binom{m}{0}+\binom{m-1}{1}+\binom{m-2}{2}+\cdots +\binom{m-\lfloor \frac m2\rfloor}{\lfloor \frac m2\rfloor}=F_{m+1}.$$
Now, we try to represent $\sum\binom nk=F_{m},$ , such that $n\geq k\geq 0,$ with $n+k=m-1,$ in the same form as above. This, means, $n=m-k-1$ and $$n\geq k\implies m-1\geq 2k\implies k\leq \frac {m-1}{2}.$$
We again observe, if $$k=0,1,2,\cdots, \lfloor \frac {m-1}{2}\rfloor$$, $$n=m-1,m-2,\cdots,m-\lfloor \frac {m-1}{2}\rfloor-1.$$ So, $$\sum\binom nk=\binom{m-1}{0}+\binom{m-2}{1}+\cdots +\binom{m-1-\lfloor \frac {m-1}{2}\rfloor}{\lfloor \frac {m-1}{2}\rfloor}=F_{m}.$$
Now, for $m+1$ we should have, $\sum\binom nk=F_{m+1},$ such that $n\geq k\geq 0,$ with $n+k=m+1.$ Also, if $n\geq k$, then, $m+1\geq 2k\implies k\leq \frac {m+1}{2}.$
We observe, if $$k=0,1,2,\cdots, \lfloor \frac {m+1}{2}\rfloor$$, $$n=m+1,m,\cdots,m-\lfloor \frac {m+1}{2}\rfloor+1.$$ So, $$\sum\binom nk=\binom{m+1}{0}+\binom{m}{1}+\binom{m-1}{2}+\cdots +\binom{m+1-\lfloor \frac {m+1}{2}\rfloor}{\lfloor \frac {m+1}{2}\rfloor}=F_{m+2}.$$
Now, we compute, $$F_{m+1}+F_m=(\binom{m}{0}+\binom{m-1}{1}+\binom{m-2}{2}+\cdots +\binom{m-\lfloor \frac m2\rfloor}{\lfloor \frac m2\rfloor})+(\binom{m-1}{0}+\binom{m-2}{1}+\cdots +\binom{m-1-\lfloor \frac {m-1}{2}\rfloor}{\lfloor \frac {m-1}{2}\rfloor})\implies \binom{m}{0}+(\binom{m-1}{1}+\binom{m-1}{0})+(\binom{m-2}{2}+\binom{m-2}{1})+\cdots +(\binom{m-\lfloor \frac m2\rfloor}{\lfloor \frac m2\rfloor} +\binom{m-1-\lfloor \frac {m-1}{2}\rfloor}{\lfloor \frac {m-1}{2}\rfloor}).$$ Using, Pascal's identity and the idenitity: $\lfloor\frac m2\rfloor=\lfloor\frac{m-1}{2}\rfloor +1,$ we have, $$F_{m+1}+F_m=\binom m0+\binom{m}{1}+\binom{m-1}{2}+\cdots+(\binom{m-\lfloor \frac m2\rfloor}{\lfloor \frac m2\rfloor} +\binom{m-\lfloor \frac {m}{2}\rfloor}{\lfloor \frac {m}{2}\rfloor-1})=\binom {m+1}{0}+\binom{m}{1}+\binom{m-1}{2}+\cdots+\binom{m-\lfloor \frac m2\rfloor+1}{\lfloor \frac m2\rfloor}.$$
Now, the problem is, in the expression $$F_{m+1}+F_m$$, every term matches with $$F_{m+2}$$ except the last term, $$\binom{m-\lfloor \frac m2\rfloor+1}{\lfloor \frac m2\rfloor}$$, which should be equivalent to, $\binom{m+1-\lfloor \frac {m+1}{2}\rfloor}{\lfloor \frac {m+1}{2}\rfloor}$ ? I don't get where is the problem occuring?