$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that
\begin{align}
\sum_{n = 1}^{\infty}{1 \over m^{2} + n^{2}} & =
\sum_{n = 1}^{\infty}{1 \over \pars{n - \ic m}\pars{n + \ic m}} =
{\Psi\pars{-\ic m} - \Psi\pars{\ic m} \over -2\ic m}
\\[5mm] & =
{1 \over m}\,\Im\Psi\pars{\ic m}\qquad\pars{~\Psi:\ Digamma\ Function~}
\\[5mm] & =
{1 \over 2m^{2}} + {\pars{\pi/2}\coth\pars{\pi m} \over m}
\,\,\,\stackrel{\mrm{as}\ m\ \to\ \infty}{\sim}\,\,\,{\pi \over 2}\,{1 \over m}
\end{align}
such that the double series diverges because
$\ds{\sum_{m = 1}^{M}{\pi \over 2}\,{1 \over m} = {\pi \over 2}\,H_{M}}$ where $\ds{H_{z}}$ is the Harmonic Number.
See $\ds{\mathbf{\color{#000}{6.3.11}}}$ in A & S Table.