Are there formulae for the nth derivatives of the following functions?
$1)\quad$ $sin^{-1} x$
$2)\quad$ $tan^{-1} x$
$3)\quad$ $sec x$
$4)\quad$ $tan x$
Thanks.
Are there formulae for the nth derivatives of the following functions?
$1)\quad$ $sin^{-1} x$
$2)\quad$ $tan^{-1} x$
$3)\quad$ $sec x$
$4)\quad$ $tan x$
Thanks.
For $\arcsin(x)$, the $n$-th derivative is a hypergeometric function, see here. In terms of Legendre polynomial: $$ \frac{\partial ^n\sin ^{-1}(z)}{\partial z^n}=\frac{(-i)^{n-1} (n-1)! }{\left(1-z^2\right)^{n/2}} P_{n-1}\left(\frac{i z}{\sqrt{1-z^2}}\right) $$
For $\arctan(x)$, see here. Here is a nice representative: $$ \frac{\partial ^n\tan ^{-1}(z)}{\partial z^n}=\frac{1}{2} \left(i (-1)^n (n-1)!\right) \left((z-i)^{-n}-(z+i)^{-n}\right) $$
For the tangent, the answer involved Stirling numbers of the second kind: $$ \frac{\partial ^n\tan (z)}{\partial z^n}=-i^{n+1} 2^n (i \tan (z)-1+\delta _n) \sum _{k=0}^n \frac{(-1)^k k! }{2^k} \, \mathcal{S}_n^{(k)} \, \left(i \tan (z)+1\right)^k $$
Results for $\sec(x)$ can be found here.
A related problem. See Chapter 6 in this book for formulas for the nth derivative, $n$ is a non-negative integer, of $\tan(x)$ and $\sec(x)$ in terms of the $\psi$ function
\begin{equation} {\tan}^{(n)} (z) = \frac{1}{{\pi}^{n+1}} \left({\psi}^{(n)} \left( \frac{1}{2}+\frac{z}{\pi}\right) + (-1)^{n+1} {\psi}^{(n)} \left( \frac{1}{2}-\frac{z}{\pi}\right) \right)\,, \end{equation}
\begin{align}\nonumber {\sec}^{(n)}(z) = \frac{1}{ (2 \pi)^{ n + 1 } } &\left( (-1)^{n}{\psi}^{(n)}\left( -\frac{2z-3\pi}{4\pi}\right) - (-1)^{n}{\psi}^{(n)}\left( -\frac{2z-\pi}{4\pi}\right) \right.& \\ \nonumber & \left. - {\psi}^{(n)}\left( \frac{2z+\pi}{4\pi}\right) + {\psi}^{(n)}\left( \frac{2z+3\pi}{4\pi}\right) \right) \,. & \end{align}
One can find or derive all answers from results reviewed and surveyed in the paper
and closely-related referecens therein. For expample, for $n\ge1$,
\begin{gather*} \frac{\operatorname{d}^n(\arcsin x)}{\operatorname{d} x^n}=-\frac{\operatorname{d}^n(\arccos x)}{\operatorname{d} x^n} =\frac{\operatorname{d}^{n-1}}{\operatorname{d} x^{n-1}}\biggl(\frac1{\sqrt{1-x^2}\,}\biggr)\\ =\frac1{(2x)^n}\sum_{k=0}^{n-1}2^{k+1}(2k-1)!! (n-k-1)!\binom{n-1}{k}\binom{k}{n-k-1}\biggl(\frac{x^2}{1-x^2}\biggr)^{k+1/2},\\ (\arctan z)^{(n)} =\frac{(n-1)!}{(2z)^{n-1}}\sum_{k=0}^{n-1}(-1)^k\binom{k}{n-k-1}\frac{(2z)^{2k}}{(1+z^2)^{k+1}},\\ (\tan x)^{(n)}=-(\ln\cos x)^{(n+1)} =\sum_{k=1}^{n+1} \frac{1}{k}\sum_{\ell=0}^k\binom{k}{\ell}\frac{(-1)^{\ell}}{(2\cos x)^\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^{n+1} \cos\biggl[(2q-\ell)x+\frac{(n+1)\pi}2\biggr], \end{gather*} where $\lfloor{t}\rfloor$ denotes the floor function whose value equals the largest integer less than or equal to $t$.
More references