By the Faa di Bruno formula and some properties of the Bell polynomials of the second kind, we acquire
\begin{align*}
\biggl(\frac1{\sin z}\biggr)^{(n)}
&=\sum_{k=0}^n\frac{(-1)^kk!}{\sin^{k+1}z} B_{n,k}\biggl(\cos z,-\sin z,-\cos z,\sin z,\dotsc, \sin\biggl[z+\frac{(n-k+1)\pi}{2}\biggr]\biggr)\\
&=\frac{1}{\sin z}\sum_{k=0}^n \sum_{\ell=0}^k\frac{\binom{k}{\ell}}{(2\sin z)^{\ell}} \sum_{q=0}^\ell(-1)^q\binom{\ell}{q}(2q-\ell)^n \cos\biggl[(2q-\ell)z+\frac{(n-\ell)\pi}2\biggr]\\
&\to\sum_{k=0}^n \sum_{\ell=0}^k\frac{\binom{k}{\ell}}{2^\ell(\sin1)^{\ell+1}} \sum_{q=0}^\ell(-1)^q\binom{\ell}{q}(2q-\ell)^n \cos\biggl[2q-\ell+\frac{(n-\ell)\pi}2\biggr], \quad z\to1
\end{align*}
and
\begin{gather*}
\biggl(\frac{1}{2\cos z-1}\biggr)^{(n)}
=\sum_{k=0}^n\frac{(-1)^kk!}{(2\cos z-1)^{k+1}} 2^k B_{n,k}\biggl(-\sin z,-\cos z,\sin z,\cos z,\dotsc, \cos\biggl[z+\frac{(n-k+1)\pi}{2}\biggr]\biggr)\\
=\sum_{k=0}^n\frac{2^k\cos^kz}{(2\cos z-1)^{k+1}} \sum_{\ell=0}^k\binom{k}{\ell}\frac{(-1)^\ell}{(2\cos z)^\ell}
\sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^n \cos\biggl[(2q-\ell)z+\frac{n\pi}2\biggr]\\
\to\cos\frac{n\pi}2 \sum_{k=0}^n 2^k \sum_{\ell=0}^k\frac{(-1)^\ell}{2^\ell} \binom{k}{\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^n, \quad z\to0\\
=\begin{cases}\displaystyle
(-1)^m\sum_{k=0}^{2m} 2^k \sum_{\ell=0}^k\frac{(-1)^\ell}{2^\ell} \binom{k}{\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^{2m} & n=2m\\
0, & n=2m+1
\end{cases}
\end{gather*}
for $m,n\ge0$. Therefore, we have
\begin{multline*}
\frac1{\sin z}=\frac1{\sin1}+\sum_{n=1}^\infty\Biggl\{\sum_{k=0}^n \sum_{\ell=0}^k\frac{\binom{k}{\ell}}{2^\ell(\sin1)^{\ell+1}}\\ \times\sum_{q=0}^\ell(-1)^q\binom{\ell}{q}(2q-\ell)^n \cos\biggl[2q-\ell+\frac{(n-\ell)\pi}2\biggr]\Biggr\}\frac{(z-1)^n}{n!}, \quad |z-1|<1
\end{multline*}
and
\begin{equation*}
\frac{1}{2\cos z-1}
=\sum_{m=0}^\infty(-1)^m\Biggl[\sum_{k=0}^{2m} 2^k \sum_{\ell=0}^k\frac{(-1)^\ell}{2^\ell} \binom{k}{\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^{2m}\Biggr]\frac{z^{2m}}{(2m)!}, \quad |z|<\frac{\pi}6.
\end{equation*}
All formulas, notations, concepts, and knowledge can be found in the following two papers.
References
- F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844--858; available online at https://doi.org/10.1016/j.amc.2015.06.123.
- Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No. 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.