If $\liminf \frac{a_{k+1}}{a_k} = 0$, the first inequality is clear. Thus let us suppose it is strictly positive.
Let $0 < c < \liminf \frac{a_{k+1}}{a_k}$. Then there is a $K_c$ such that for all $k \geqslant K_c$ we have $\frac{a_{k+1}}{a_k} > c$, and hence
$$a_{K_c+n} = a_{K_c}\prod_{j=0}^{n-1} \frac{a_{K_c+j+1}}{a_{K_c+j}} > a_{K_c}\cdot c^n = \frac{a_{K_c}}{c^{K_c}}\cdot c^{K_c+n},$$
which implies
$$\left(a_{K_c+n}\right)^{1/(K_c+n)} > \underbrace{\left(\frac{a_{K_c}}{c^{K_c}}\right)^{1/(K_c+n)}}_{\xrightarrow[n\to\infty]{} 1}\cdot c$$
and therefore $\liminf (a_k)^{1/k} \geqslant c$. Since that holds for all $0 < c < \liminf \frac{a_{k+1}}{a_k}$, the inequality
$$\liminf \frac{a_{k+1}}{a_k} \leqslant \liminf a_k^{1/k}$$
follows. The third inequality is seen analogously, and the second, $\liminf a_k^{1/k} \leqslant \limsup a_k^{1/k}$ is a special case of the general inequality between the limites inferiores and superiores.
The purported equality
$$\limsup \left| \frac{a_{k+1}}{a_k}\right| = R \implies \frac{1}{\limsup |a_k|^{1/k}} = R$$
is however generally false. Consider $$a_k = \begin{cases}1 &, k \text{ odd}\\ 2 &, k \text{ even}\end{cases}$$ for a simple counterexample. $\limsup \frac{a_{k+1}}{a_k} = 2$, but $a_k^{1/k} \to 1$.
If $\lim \left\lvert\frac{a_{k+1}}{a_k}\right\rvert$ exists, then we have
$$\lim \left\lvert\frac{a_{k+1}}{a_k}\right\rvert = \lim \lvert a_k\rvert^{1/k},$$
however.