If $(x_n)$ is any sequence of positive real numbers, then $$\lim \inf \dfrac{x_{n+1}}{x_n}\leq \lim \inf x_n^{1\over n} \leq \lim \sup x_n^{1\over n} \leq \lim \sup \dfrac{x_{n+1}}{x_n}. $$
I don't understand how am I suppose to use the hint nor what to do afterwards.
Hint: If $\lim \sup \dfrac{x_{n+1}}{x_n}-\infty$, right hand inequality is obvious. So suppose $\lim \sup \dfrac{x_{n+1}}{x_n}=M$. Then $\dfrac{x_{n+1}}{x_n}< M+\epsilon$ $\forall n\geq N$, i.e., $x_{n+k}\leq (M+\epsilon)^kx_n$ for all $k\geq 0$.