Prove for every $a_n>0$ if $\lim _{n\to \infty }\:\:\left(\sqrt[n]{a_n}\right)=L$ then $\lim _{n\to \infty }\:\:\left(\frac{a_{n+1}}{a_n}\right)=L$ is true or false
i know that's its true if $\lim _{n\to \infty }\:\:\left(\frac{a_{n+1}}{a_n}\right)=L$ then $\lim _{n\to \infty }\:\:\left(\sqrt[n]{a_n}\right)=L$
but in this case i think that this is false and my example is if $a_n=\sqrt[n]{n^n}$ then $\lim _{n\to \infty }\:\:\sqrt[n]{n^n}=\infty \:$ but $\lim _{n\to \infty \:}\left(\frac{\left(n+1\right)^n}{n^n}\right)=e$
is that correct?