I want to evaluate the following integral via complex analysis $$\int\limits_{x=0}^{x=\infty}e^{-ax}\cos (bx)\operatorname d\!x \ \ ,\ \ a >0$$
Which function/ contour should I consider ?
I want to evaluate the following integral via complex analysis $$\int\limits_{x=0}^{x=\infty}e^{-ax}\cos (bx)\operatorname d\!x \ \ ,\ \ a >0$$
Which function/ contour should I consider ?
As Daniel Fischer pointed out, note that
$$ \int_{0}^{+\infty} e^{-ax} \cos(bx) \; dx = \Re \Bigg( \int_{0}^{+\infty} e^{-ax} e^{ibx} \; dx \Bigg). $$
(where $\Re(z)$ denotes the real part of $z$). Then,
$$ \begin{align*} \int_{0}^{+\infty} e^{-ax} e^{ibx} \; dx & = {} \int_{0}^{+\infty} e^{-(a-ib)x} \; dx \\[1mm] & = \lim \limits_{M \to +\infty} \int_{0}^{M} e^{-(a-ib)x} \; dx \\[1mm] & = \lim \limits_{M \to +\infty} \left[ -\frac{1}{a-ib} e^{-(a-ib)x} \right]_{0}^{M} \\[1mm] & = \lim \limits_{M \to +\infty} \Big( -\frac{1}{a-ib} e^{-(a-ib)M} + \frac{1}{a-ib} \Big) \\[1mm] & = \frac{1}{a-ib} \\[1mm] & = \frac{a+ib}{\vert a-ib \vert^{2}}. \\ \end{align*} $$
So,
$$ \int_{0}^{+\infty} e^{-ax} \cos(bx) \; dx = \frac{a}{\vert a-ib \vert^{2}}. $$
$$ t \in \mathbb{R} ; \mapsto ; - \frac{1}{\alpha} e^{-\alpha t} $$
is an antiderivative of $f$. Eventually:
$$ \int_{0}^{+\infty} e^{-\alpha t} ; dt = \lim \limits_{M \to +\infty} \left[ - \frac{1}{\alpha} e^{-\alpha t} \right]{t=0}^{t=M} = \lim \limits{M \to +\infty} -\frac{1}{\alpha} e^{-\alpha M} + \frac{1}{\alpha} = \frac{1}{\alpha}. $$
– pitchounet Apr 13 '18 at 15:43Let us integrate the function $e^{-Az}$, where $A=\sqrt{a^2+b^2}$ on a circular sector in the first quadrant, centered at the origin and of radius $\mathcal{R}$, with angle $\omega$ which satisfies $\cos \omega = a/A$, and therefore $\sin \omega = b/A$. Let this sector be called $\gamma$.
Since our integrand is obviously holomorphic on the whole plane we get: $$ \oint_\gamma \mathrm{d}z e^{-Az} = 0. $$ Breaking it into its three pieces we obtain: $$ \int_0^\mathcal{R}\mathrm{d}x e^{-Ax}+\int_0^\omega \mathrm{d}\varphi i\mathcal{R}e^{i\varphi}e^{-A\mathcal{R}e^{i\varphi}}+\int_{\mathcal{R}}^0 \mathrm{d}r e^{i\omega}e^{-Are^{i\omega}}=0. $$ The mid integral, as $\mathcal{R}\to\infty$ is negligible. So: $$ \int_0^\infty\mathrm{d}xe^{-Ax}=\int_0^\infty\mathrm{d}r (\cos\omega+i\sin\omega)e^{-Ar(\cos\omega+i\sin\omega)} $$ $$ \frac{1}{A}=\frac{1}{A}\int_0^\infty\mathrm{d}r(a+ib)e^{-r(a+ib)} $$ $$ \int_0^\infty\mathrm{d}r(a+ib)e^{-ar} (\cos br - i\sin br) = 1 $$ Now let's call $I_c = \int_0^\infty\mathrm{d}re^{-ar}\cos br$ and $I_s = \int_0^\infty\mathrm{d}re^{-ar}\sin br$, then: $$ aI_c-iaI_s+ibI_c+bI_s=1 $$ and by solving: $$ aI_c+bI_s=1;\ \ \ \ -aI_s+bI_c=0 $$ $$ I_c=\frac{a}{a^2+b^2}; \ \ \ \ I_s=\frac{b}{a^2+b^2}. $$ This method relies only on the resource of contour integration as you asked!
First,you may use the definition of Lapace transform to get it or integration by parts twice.
For complex numbers your integrand is the real part of $\exp(-ax+ibx)$. Use this function to evaluate the unbounded integral then evaluate the bounded one