I need to compute $\int_0^\infty e^{-ax}cos(bx) dx $. Integration by parts seems to go nowhere and I can't think of any useful substitutions.
-
1HINT:$e^{ix}+e^{-ix}=2\ cos(x)$ – tired Mar 18 '16 at 19:15
-
See here: http://math.stackexchange.com/questions/358356/solving-the-improper-integral-int-0-infty-e-ax-cosbx-dx?rq=1 – Brenton Mar 18 '16 at 19:18
-
1Integration by parts works fine if you call the integral $I$, do by parts twice and rearrange to get $I$ which reappears – David Quinn Mar 18 '16 at 19:19
2 Answers
We can use $\cos(bx)=\Re(e^{ibx})$ to obtain
\begin{eqnarray} I\equiv \Re \int_0^\infty e^{-ax} e^{ibx}dx=\Re \int_0^\infty e^{-\alpha x} dx=\Re\left(\frac{1}{\alpha}\right) \end{eqnarray} where $\alpha \equiv a-ib$, assuming $a>0$. Thus we obtain $$ I= \Re\left(\frac{1}{\alpha}\right)=\Re\left( \frac{1}{a-ib}\right)=\Re\left( \frac{a+ib}{a^2+b^2}\right) $$ You can see that \begin{equation} I= \frac{a}{a^2+b^2} \end{equation}
- 9,878
-
Can you tell me why $\int_{0}^{\infty}e^{-\alpha x}dx=\frac{1}{\alpha}$ where $\alpha$ is a complex number $x$ is real!? – Hosein Rahnama Apr 12 '18 at 14:33
Assume $\;a>0\;$ and put
$$I=\int_0^\infty e^{-ax}\cos bx\,dx$$
Now, by parts:
$$\begin{cases}u=\cos bx\implies&u'=-b\sin bx\\{}\\v'=e^{-ax}\implies&v=-\frac1ae^{-ax} \end{cases}\;\;\implies I=\left.-\frac{e^{-ax}\cos bx}a\right|_0^\infty-\frac ba\int_0^\infty e^{-ax}\sin bx\,dx$$
and again by parts and take the limits:
$$I=\frac1a+\left.\frac b{a^2} e^{-ax}\sin bx\right|_0^\infty-\frac{b^2}{a^2}I\implies\left(\frac{a^2+b^2}{a^2}\right)I=\frac1a\implies I=\frac a{a^2+b^2}$$
- 211,718
- 17
- 136
- 287