Simplify $f(x)=Arctan(x)+Arctan(\frac{1}{x})$.
My attempt
For all non null real numbers $f$ is derivable and is odd:
so for all non null real number x : $f'(x)=\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0$ . So $f$ is constant on $\mathbb{R^{\star}}$ so $f(x)=f(1)=2Arctan(1)=\frac{\pi}{2}$ and since $f$ is odd then $f(-x)=-f(x)=-\frac{\pi}{2}$ so this is my conclusion:
$f(x)=\frac{\pi}{2}$ if x>0 and $f(x)=-\frac{\pi}{2}$ if x<0. Can someone please check my work. Thank you very much .