We all know that sums of the form $\displaystyle{\sum\frac1{(n+a)(n+b)}}$ or $\displaystyle{\sum\frac1{(n+a)(n+b)(n+c)}}$ etc., are telescopic in nature, and solving them is trivial: for integer values of a, b, and c, that is ! But what if a, b, and c are not integers? What then? Suddenly, things aren't so simple and trivial anymore, and the formerly banal and deceitfully tame-looking problem takes on whole new twist, gaining entirely unexpected dimensions of depth, meaning, and insight. The key, when dealing with such surprising turns of events, is to just take a step back, and try to parse or rephrase the older, well-worn solution in terms which might prove useful or relevant to circumventing the obstacles raised by the newly-encountered situation.
For instance, it is by no means difficult to show that $\displaystyle{\sum_{n=1}^\infty\frac1{(n+a)(n+b)}}=\frac{H_a-H_b}{a-b}$ , or that $$\sum_{n=1}^\infty\frac1{(n+a)(n+b)(n+c)}=\frac{(a-b)\cdot H_c\ +\ (b-c)\cdot H_a\ +\ (c-a)\cdot H_b}{(a-b)(b-c)(c-a)}$$ for natural values of a, b, c. Indeed, the user Random Variable has already proved it on this thread, though I now realize that my initial formula is slightly mistaken, in the sense that either the sum should begin at $0$, with the $\gamma$ present, or at $1$, with the $\gamma$ absent. Now, the whole question becomes how to redefine $H_m$ , so as to be able to extend its meaning to non-natural arguments. For natural arguments, we have the well-known formula $H_m=\displaystyle\sum_{k=1}^m\frac1k$ . Now, let us take the simple function $f_k(x)=\displaystyle\frac{x^k}k$ , and notice that $f_k'(x)=x^{k-1}$ . And since we know that $\displaystyle{\sum_{k=1}^mx^{k-1}=\frac{1-x^m}{1-x}}$ , this finally allows us to conclude that $\displaystyle{H_m=\int_0^1\frac{1-x^m}{1-x}dx}$ , which, unlike the previous formula, can easily be extended to non-natural arguments as well. This has already been done by Euler two and a half centuries ago, so it's hardly new territory. Now, in our case, $\{a,b,c\}=\left\{\frac13,\frac23,1\right\}$ , and the value of $H_1$ is $1$, so all that's left to do is to compute $H_\frac13$ and $H_\frac23$ using the above formula, since $$\sum_{n=0}^\infty\frac1{(3n+1)(3n+2)(3n+3)}=\frac16+\frac1{27}\cdot\sum_{n=1}^\infty\frac1{\left(n+\frac13\right)\left(n+\frac23\right)(n+1)}$$
$$H_\frac13=\int_0^1\frac{1-\sqrt[3]x}{1-x}dx=\int_0^1\frac{1-t}{1-t^3}d\left(t^3\right)=\int_0^1\frac1{1+t+t^2}d\left(t^3\right)=\int_{\sqrt[3]0}^{\sqrt[3]1}\frac{3\,t^2}{1+t+t^2}dt=$$
$$=3\int_0^1\left(1-\frac{1+t}{1+t+t^2}\right)dt=3\,\bigg[\int_0^11\cdot dt-\tfrac12\int_0^1\frac{2+2t}{1+t+t^2}dt\bigg]=$$
$$=3\,\bigg[t|_0^1-\tfrac12\bigg(\int_0^1\frac1{1+t+t^2}dt+\int_0^1\frac{1+2t}{1+t+t^2}dt\bigg)\bigg]=$$
$$=3\,\bigg[1-\tfrac12\int_0^1\frac1{\left(t+\frac12\right)^2+\frac34}dt-\tfrac12\cdot\ln\left(1+t+t^2\right)_0^1\bigg]=$$
$$=3\,\bigg[1-\tfrac12\cdot\frac1{\sqrt3/2}\cdot\arctan\bigg(\frac{t+\frac12}{\sqrt3\big/2}\bigg)_0^1-\frac{\ln3}2\bigg]=3-\frac\pi{2\sqrt3}-\tfrac32\ln3.$$
Similarly for $\displaystyle{H_{\frac23}=\tfrac32+\frac\pi{2\sqrt3}-\tfrac32\ln3}$ . Then, by substituting these values back into the original formula above, we finally arrive at the desired result $\displaystyle{I=\frac{\pi\sqrt3-3\ln3}{12}}$ .