2

Does the following series have a 'closed' form : $$\sum_{n=1}^{+\infty}\frac{1}{(n+a)(n+b)}.$$ Where $n\in \Bbb{N}$ and $a,b \in (0,+\infty)$

For $a,b$ integer we can use Partial fraction decomposition. Using Maple for the general case it seems the 'closed' form is $$ \frac{\Psi(1+a)-\Psi(1+b)}{a-b} $$

Any ideas how to show that?

1 Answers1

7

$$\begin{eqnarray*}\psi(1+a)-\psi(1+b)&=&\sum_{n=1}^{\infty}\left(\frac{a}{n(n+a)}-\frac{b}{n(n+b)}\right)=\sum_{n=1}^{\infty}\frac{a(n+b)-b(n+a)}{n(n+a)(n+b)}\\&=&(a-b)\sum_{n=1}^{\infty}\frac{1}{(n+a)(n+b)}.\end{eqnarray*}$$

Jack D'Aurizio
  • 353,855
user71352
  • 13,038